[go: up one dir, main page]

Skip to main content

Design of General Aircraft Health Management System

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12999))

Included in the following conference series:

Abstract

This paper studies the basic architecture of general aircraft health management, and analyzes the key technologies of general aircraft health management system, including data management technology and database technology, fault diagnosis technology, health assessment technology. Finally, a general aircraft health management software is developed and verified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ogaji, S.O.T., Singh, R.: Advanced engine diagnostics using artificial neural networks. Appl. Soft Comput. 3(3), 259–271 (2003)

    Article  Google Scholar 

  2. Wang, Z., Zarader, J.L., Argentieri, S.: A novel aircraft engine fault diagnostic and prognostic system based on SVM. In: International Conference on Condition Monitoring and Diagnosis, 2012, pp. 723–728. IEEE (2012)

    Google Scholar 

  3. Kobayashi, T., Simon, D.L.: Integration of on-line and off-line diagnostic algorithms for aircraft engine health management. NASA, TM-2007-214980 (2007)

    Google Scholar 

  4. Heider, R.: Improving the quality of technical data for developing case based reasoning diagnostic software for aircraft maintenance. In: Proceedings 13th International Conference on Data Engineering, 584–584 (1997)

    Google Scholar 

  5. Akaike, H.: Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 21(1), 243–247 (1969). https://doi.org/10.1007/BF02532251

    Article  MathSciNet  MATH  Google Scholar 

  6. Said, S.E., Dickey, D.A.: Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71(3), 599–607 (1984)

    Article  MathSciNet  Google Scholar 

  7. Lütkepohl, H.: Vector autoregressive models. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 1645–1647. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-04898-2_609

  8. Johansen S.: Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica: J. Econ. Soc., 1551–1580 (1991)

    Google Scholar 

  9. Osborn, D.R.: Exact and approximate maximum likelihood estimators for vector moving average processes. J. R. Stat. Soc. Ser. B (Methodol.) 39, 114–118 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Tsay, R.S.: Testing and modeling threshold autoregressive processes. J. Am. Stat. Assoc. 84(405), 231–240 (1989)

    Article  MathSciNet  Google Scholar 

  11. Baillie, R.T., Bollerslev, T., Mikkelsen, H.O.: Fractionally integrated generalized autoregressive conditional heteroskedasticity. J. Econom. 74(1), 3–30 (1996)

    Article  MathSciNet  Google Scholar 

  12. Koskela, T., Lehtokangas, M., Saarinen, J., et al.: Time series prediction with multilayer perceptron, FIR and Elman neural networks. In: Citeseer, pp. 491–496 (1996)

    Google Scholar 

  13. Gardner, M.W., Dorling, S.R.: Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15), 2627–2636 (1998)

    Article  Google Scholar 

  14. Leung, H., Lo, T., Wang, S.: Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Trans. Neural Netw. 12(5), 1163–1172 (2001)

    Article  Google Scholar 

  15. Zhang, J., Xiao, X.: Predicting chaotic time series using recurrent neural network. Chin. Phys. Lett. 17(2), 88 (2000)

    Article  Google Scholar 

  16. Han, M., Xi, J., Xu, S., et al.: Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans. Sig. Process. 52(12), 3409–3416 (2004)

    Article  MathSciNet  Google Scholar 

  17. Ren, G., Zhang, G., Wang, J.: Application of data mining in aeronautical information system. Comput. Digit. Eng. 48(12), 2826–2829+2856 (2020)

    Google Scholar 

  18. Chen, H., Dong, Y., Gu, Q., Liu, Y.: An end-to-end deep neural network for truth discovery. In: Wang, G., Lin, X., Hendler, J., Song, W., Xu, Z., Liu, G. (eds.) WISA 2020. LNCS, vol. 12432, pp. 377–387. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60029-7_35

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported by Aviation Science Funding (202000020M0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tengfei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, X., Zhang, T., Zhu, Q., Zhang, G. (2021). Design of General Aircraft Health Management System. In: Xing, C., Fu, X., Zhang, Y., Zhang, G., Borjigin, C. (eds) Web Information Systems and Applications. WISA 2021. Lecture Notes in Computer Science(), vol 12999. Springer, Cham. https://doi.org/10.1007/978-3-030-87571-8_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87571-8_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87570-1

  • Online ISBN: 978-3-030-87571-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics