Abstract
This paper studies the basic architecture of general aircraft health management, and analyzes the key technologies of general aircraft health management system, including data management technology and database technology, fault diagnosis technology, health assessment technology. Finally, a general aircraft health management software is developed and verified.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ogaji, S.O.T., Singh, R.: Advanced engine diagnostics using artificial neural networks. Appl. Soft Comput. 3(3), 259–271 (2003)
Wang, Z., Zarader, J.L., Argentieri, S.: A novel aircraft engine fault diagnostic and prognostic system based on SVM. In: International Conference on Condition Monitoring and Diagnosis, 2012, pp. 723–728. IEEE (2012)
Kobayashi, T., Simon, D.L.: Integration of on-line and off-line diagnostic algorithms for aircraft engine health management. NASA, TM-2007-214980 (2007)
Heider, R.: Improving the quality of technical data for developing case based reasoning diagnostic software for aircraft maintenance. In: Proceedings 13th International Conference on Data Engineering, 584–584 (1997)
Akaike, H.: Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 21(1), 243–247 (1969). https://doi.org/10.1007/BF02532251
Said, S.E., Dickey, D.A.: Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71(3), 599–607 (1984)
Lütkepohl, H.: Vector autoregressive models. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 1645–1647. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-04898-2_609
Johansen S.: Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica: J. Econ. Soc., 1551–1580 (1991)
Osborn, D.R.: Exact and approximate maximum likelihood estimators for vector moving average processes. J. R. Stat. Soc. Ser. B (Methodol.) 39, 114–118 (1977)
Tsay, R.S.: Testing and modeling threshold autoregressive processes. J. Am. Stat. Assoc. 84(405), 231–240 (1989)
Baillie, R.T., Bollerslev, T., Mikkelsen, H.O.: Fractionally integrated generalized autoregressive conditional heteroskedasticity. J. Econom. 74(1), 3–30 (1996)
Koskela, T., Lehtokangas, M., Saarinen, J., et al.: Time series prediction with multilayer perceptron, FIR and Elman neural networks. In: Citeseer, pp. 491–496 (1996)
Gardner, M.W., Dorling, S.R.: Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15), 2627–2636 (1998)
Leung, H., Lo, T., Wang, S.: Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Trans. Neural Netw. 12(5), 1163–1172 (2001)
Zhang, J., Xiao, X.: Predicting chaotic time series using recurrent neural network. Chin. Phys. Lett. 17(2), 88 (2000)
Han, M., Xi, J., Xu, S., et al.: Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans. Sig. Process. 52(12), 3409–3416 (2004)
Ren, G., Zhang, G., Wang, J.: Application of data mining in aeronautical information system. Comput. Digit. Eng. 48(12), 2826–2829+2856 (2020)
Chen, H., Dong, Y., Gu, Q., Liu, Y.: An end-to-end deep neural network for truth discovery. In: Wang, G., Lin, X., Hendler, J., Song, W., Xu, Z., Liu, G. (eds.) WISA 2020. LNCS, vol. 12432, pp. 377–387. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60029-7_35
Acknowledgment
This work was supported by Aviation Science Funding (202000020M0002).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Xie, X., Zhang, T., Zhu, Q., Zhang, G. (2021). Design of General Aircraft Health Management System. In: Xing, C., Fu, X., Zhang, Y., Zhang, G., Borjigin, C. (eds) Web Information Systems and Applications. WISA 2021. Lecture Notes in Computer Science(), vol 12999. Springer, Cham. https://doi.org/10.1007/978-3-030-87571-8_57
Download citation
DOI: https://doi.org/10.1007/978-3-030-87571-8_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87570-1
Online ISBN: 978-3-030-87571-8
eBook Packages: Computer ScienceComputer Science (R0)