[go: up one dir, main page]

Skip to main content

Contrastive Learning Based Stain Normalization Across Multiple Tumor in Histopathology

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Generative adversarial network (GAN) has been a prevalence in color normalization techniques to assist deep learning analysis in H&E stained histopathology images. The widespread adoption of GAN has effectively released pathologists from the heavy manual workload in the conventional template image selection. However, the transformation might cause significant information loss, or generate undesirable results such as mode collapse in all likelihood, which may affect the performance in the succeeding diagnostic task. To address the issue, we propose a contrastive learning method with a color-variation constraint, which maximally retains the recognizable phenotypic features at the training of a color-normalization GAN. In a self-supervised manner, the discriminative tissue patches across multiple types of tumors are clustered, taken as the salient input to feed the GAN. Empirically, the model is evaluated by public datasets of large cohorts on different cancer diseases from TCGA and Camelyon16. We show better phenotypical recognizability along with an improved performance in the histology image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almahairi, A., Rajeshwar, S., Sordoni, A., Bachman, P., Courville, A.: Augmented cycleGAN: learning many-to-many mappings from unpaired data. In: International Conference on Machine Learning, pp. 195–204. PMLR (2018)

    Google Scholar 

  2. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Article  Google Scholar 

  3. Ciompi, F., et al.: The importance of stain normalization in colorectal tissue classification with convolutional networks. In: ISBI, pp. 160–163. IEEE (2017)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Hosseini, M.S., et al.: Atlas of digital pathology: a generalized hierarchical histological tissue type-annotated database for deep learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11747–11756 (2019)

    Google Scholar 

  6. Kather, J.N., et al.: 100,000 histological images of human colorectal cancer and healthy tissue. In: Zenodo. Zenodo (2018)

    Google Scholar 

  7. Kather, J.N., et al.: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25(7), 1054–1056 (2019)

    Article  Google Scholar 

  8. Ke, J., Shen, Y., Jiang, X., Guo, Y., Chen, Y., Liang, X.: Multiple-datasets and multiple-label based color normalization in histopathology with cGAN. In: Medical Imaging 2021: Digital Pathology. vol. 11603, p. 1160310. International Society for Optics and Photonics (2021)

    Google Scholar 

  9. Khan, A.M., et al.: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans. Biomed. Eng. 61(6), 1729–1738 (2014)

    Article  Google Scholar 

  10. Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: ISBI: From Nano to Macro, pp. 1107–1110. IEEE (2009)

    Google Scholar 

  11. Nadeem, S., Hollmann, T., Tannenbaum, A.: Multimarginal wasserstein barycenter for stain normalization and augmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 362–371. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_35

    Chapter  Google Scholar 

  12. Nishar, H., Chavanke, N., Singhal, N.: Histopathological stain transfer using style transfer network with adversarial loss. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 330–340. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_32

    Chapter  Google Scholar 

  13. Park, J., et al.: Aggregation of cohorts for histopathological diagnosis with deep morphological analysis. Sci. Rep. 11(1), 1–11 (2021)

    Article  Google Scholar 

  14. Reinhard, E., et al.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)

    Article  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Shaban, M.T., et al.: StainGAN: stain style transfer for digital histological images. In: ISBI, pp. 953–956. IEEE (2019)

    Google Scholar 

  17. Shen, Y., Ke, J.: A deformable CRF model for histopathology whole-slide image classification. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 500–508. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_48

    Chapter  Google Scholar 

  18. Tellez, D., et al.: Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 58, 101544 (2019)

    Article  Google Scholar 

  19. Vahadane, A., et al.: Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35(8), 1962–1971 (2016)

    Article  Google Scholar 

  20. Wang, Z., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  21. Zhang, L., et al.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  22. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqing Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ke, J., Shen, Y., Liang, X., Shen, D. (2021). Contrastive Learning Based Stain Normalization Across Multiple Tumor in Histopathology. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12908. Springer, Cham. https://doi.org/10.1007/978-3-030-87237-3_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87237-3_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87236-6

  • Online ISBN: 978-3-030-87237-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics