[go: up one dir, main page]

Skip to main content

RibSeg Dataset and Strong Point Cloud Baselines for Rib Segmentation from CT Scans

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12901))

Abstract

Manual rib inspections in computed tomography (CT) scans are clinically critical but labor-intensive, as 24 ribs are typically elongated and oblique in 3D volumes. Automatic rib segmentation methods can speed up the process through rib measurement and visualization. However, prior arts mostly use in-house labeled datasets that are publicly unavailable and work on dense 3D volumes that are computationally inefficient. To address these issues, we develop a labeled rib segmentation benchmark, named RibSeg, including 490 CT scans (11,719 individual ribs) from a public dataset. For ground truth generation, we used existing morphology-based algorithms and manually refined its results. Then, considering the sparsity of ribs in 3D volumes, we thresholded and sampled sparse voxels from the input and designed a point cloud-based baseline method for rib segmentation. The proposed method achieves state-of-the-art segmentation performance (Dice \(\approx 95\%\)) with significant efficiency (10–40\(\times \) faster than prior arts). The RibSeg dataset, code, and model in PyTorch are available at https://github.com/M3DV/RibSeg.

J. Yang and S. Gu—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://ribfrac.grand-challenge.org/.

  2. 2.

    https://github.com/pangyuteng/simple-centerline-extraction.

References

  1. Antonelli, M., Reinke, A., Bakas, S., et al.: The medical segmentation decathlon. arXiv preprint arXiv:2106.05735 (2021)

  2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  3. Coleman, R., Body, J.J., Aapro, M., Hadji, P., Herrstedt, J., Group, E.G.W., et al.: Bone health in cancer patients: Esmo clinical practice guidelines. Ann. Oncology 25, iii124-iii137 (2014)

    Google Scholar 

  4. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. In: ICLR (2019)

    Google Scholar 

  5. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3d point clouds: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  6. Jin, L., Ge, X., Lu, F., Sun, Y., et al.: Low-dose CT examination for rib fracture evaluation: a pilot study. Medicine 97(30) (2018)

    Google Scholar 

  7. Jin, L., et al.: Deep-learning-assisted detection and segmentation of rib fractures from CT scans: development and validation of fracnet. EBioMedicine 62, 103106 (2020)

    Google Scholar 

  8. Klinder, T., et al.: Automated model-based rib cage segmentation and labeling in CT images. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 195–202. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75759-7_24

    Chapter  Google Scholar 

  9. Lenga, M., Klinder, T., Bürger, C., von Berg, J., Franz, A., Lorenz, C.: Deep learning based rib centerline extraction and labeling. In: Vrtovec, T., Yao, J., Zheng, G., Pozo, J.M. (eds.) MSKI 2018. LNCS, vol. 11404, pp. 99–113. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11166-3_9

    Chapter  Google Scholar 

  10. Liu, J., Ni, B., Li, C., Yang, J., Tian, Q.: Dynamic points agglomeration for hierarchical point sets learning. In: ICCV, pp. 7546–7555 (2019)

    Google Scholar 

  11. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  12. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: CVPR, pp. 652–660 (2017)

    Google Scholar 

  13. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: NIPS (2017)

    Google Scholar 

  14. Ramakrishnan, S., Alvino, C., Grady, L., Kiraly, A.: Automatic three-dimensional rib centerline extraction from CT scans for enhanced visualization and anatomical context. In: Medical Imaging 2011: Image Processing, vol. 7962, p. 79622X (2011)

    Google Scholar 

  15. Ringl, H., Lazar, M., Töpker, M., Woitek, R., Prosch, H., Asenbaum, U., Balassy, C., Toth, D., Weber, M., Hajdu, S., et al.: The ribs unfolded-a CT visualization algorithm for fast detection of rib fractures: effect on sensitivity and specificity in trauma patients. Eur. Radiol. 25(7), 1865–1874 (2015)

    Article  Google Scholar 

  16. Shen, H., Liang, L., Shao, M., Qing, S.: Tracing based segmentation for the labeling of individual rib structures in chest CT volume data. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 967–974. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30136-3_117

    Chapter  Google Scholar 

  17. Sirmali, M., et al.: A comprehensive analysis of traumatic rib fractures: morbidity, mortality and management. Eur. J. Cardiothorac. Surg. 24(1), 133–138 (2003)

    Article  Google Scholar 

  18. Staal, J., van Ginneken, B., Viergever, M.A.: Automatic rib segmentation and labeling in computed tomography scans using a general framework for detection, recognition and segmentation of objects in volumetric data. Med. Image Anal. 11(1), 35–46 (2007)

    Article  Google Scholar 

  19. Teng, P.y., Bagci, A.M., Alperin, N.: Automated prescription of an optimal imaging plane for measurement of cerebral blood flow by phase contrast magnetic resonance imaging. IEEE Trans. Biomed. Eng. 58(9), 2566–2573 (2011)

    Google Scholar 

  20. Wickramasinghe, U., Remelli, E., Knott, G., Fua, P.: Voxel2Mesh: 3D mesh model generation from volumetric data. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 299–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_30

    Chapter  Google Scholar 

  21. Wu, D., et al.: A learning based deformable template matching method for automatic rib centerline extraction and labeling in ct images. In: CVPR, pp. 980–987. IEEE (2012)

    Google Scholar 

  22. Yang, J., Fang, R., Ni, B., Li, Y., Xu, Y., Li, L.: Probabilistic radiomics: ambiguous diagnosis with controllable shape analysis. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 658–666. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_73

    Chapter  Google Scholar 

  23. Yang, J., Shi, R., Ni, B.: Medmnist classification decathlon: a lightweight automl benchmark for medical image analysis. In: ISBI (2021)

    Google Scholar 

  24. Yang, J., Zhang, Q., Ni, B., Li, L., Liu, J., Zhou, M., Tian, Q.: Modeling point clouds with self-attention and gumbel subset sampling. In: CVPR, pp. 3323–3332 (2019)

    Google Scholar 

  25. Yang, X., Xia, D., Kin, T., Igarashi, T.: Intra: 3d intracranial aneurysm dataset for deep learning. In: CVPR, pp. 2656–2666 (2020)

    Google Scholar 

  26. Zaheer, M., Kottur, S., Ravanbakhsh, S., Póczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. In: NIPS (2017)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science Foundation of China (U20B2072, 61976137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingbing Ni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Gu, S., Wei, D., Pfister, H., Ni, B. (2021). RibSeg Dataset and Strong Point Cloud Baselines for Rib Segmentation from CT Scans. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics