Abstract
As Knowledge Graphs are symbolic constructs, specialized techniques have to be applied in order to make them compatible with data mining techniques. RDF2Vec is an unsupervised technique that can create task-agnostic numerical representations of the nodes in a KG by extending successful language modeling techniques. The original work proposed the Weisfeiler-Lehman kernel to improve the quality of the representations. However, in this work, we show that the Weisfeiler-Lehman kernel does little to improve walk embeddings in the context of a single Knowledge Graph. As an alternative, we examined five alternative strategies to extract information complementary to basic random walks and compare them on several benchmark datasets to show that research within this field is still relevant for node classification tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blondel, V.D., et al.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Experiment 2008(10), P10008 (2008)
Cochez, M., et al.: Biased graph walks for RDF graph embeddings. In: Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, pp. 1–12 (2017)
Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75 (2010)
Goldberg, Y., Levy, O.: word2vec explained: deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722 (2014)
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)
Hamilton, W.L., et al.: Representation Learning on Graphs: Methods and Applications. Preprint of article to appear in the IEEE Data Engineering Bulletin (2017)
Ivanov, S., Burnaev, E.: Anonymous walk embeddings. arXiv preprint arXiv:1805.11921 (2018)
Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Appl. Network Sci. 5(1), 1–42 (2019). https://doi.org/10.1007/s41109-019-0195-3
Lambiotte, R., et al.: Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 (2008)
Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web 6(2), 167–195 (2015)
Mikolov, T., et al.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems (2013)
Nickel, M., et al.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2015)
Pellegrino, M.A., Altabba, A., Garofalo, M., Ristoski, P., Cochez, M.: GEval: a modular and extensible evaluation framework for graph embedding techniques. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 565–582. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_33
Perozzi, B., et al.: Don’t walk, skip! online learning of multi-scale network embeddings. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 258–265 (2017)
Ristoski, P., de Vries, G.K.D., Paulheim, H.: A collection of benchmark datasets for systematic evaluations of machine learning on the semantic web. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 186–194. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_20
Ristoski, P., Paulheim, H.: A comparison of propositionalization strategies for creating features from linked open data. In: Linked Data for Knowledge Discovery (2014)
Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery: a comprehensive survey. J. Web Semantics 36, 1–22 (2016)
Ristoski, P., et al.: RDF2vec: RDF graph embeddings and their applications. Semantic Web 10(4), 721–752 (2019)
Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38
Schlötterer, J., et al.: Investigating extensions to random walk based graph embedding. In: 2019 IEEE International Conference on Cognitive Computing (ICCC), pp. 81–89. IEEE (2019)
Sen, P., et al.: Collective classification in network data. AI Mag. 29, 93 (2008)
Shervashidze, N., et al.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)
Vandewiele, G., et al.: Inducing a decision tree with discriminative paths to classify entities in a knowledge graph. In: SEPDA2019, the 4th International Workshop on Semantics-Powered Data Mining and Analytics, pp. 1–6 (2019)
Vishwanathan, S.V.N., et al.: Graph kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010)
Vries, G.K.D.: A fast approximation of the Weisfeiler-Lehman graph kernel for RDF data. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8188, pp. 606–621. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40988-2_39
de Vries, G.K.D., de Rooij, S.: Substructure counting graph kernels for machine learning from RDF data. Web Semantics Sci. Serv. Agents World Wide Web 35, 71–84 (2015)
Weisfeiler, B., Lehman, A.A.: A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia 2(9), 12–16 (1968)
Wilcke, X., et al.: The knowledge graph as the default data model for machine learning. Data Sci. 1, 39–57 (2017). https://doi.org/10.3233/DS-170007
Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374 (2015)
Acknowledgements
Gilles Vandewiele (1S31417N), Bram Steenwinckel (1SA0219N) and Michael Weyns (1SD8821N) are funded by a strategic base research grant of the Fund for Scientific Research Flanders (fwo). Pieter Bonte (1266521N) is funded by a postdoctoral fellowship of the FWO.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Steenwinckel, B. et al. (2021). Walk Extraction Strategies for Node Embeddings with RDF2Vec in Knowledge Graphs. In: Kotsis, G., et al. Database and Expert Systems Applications - DEXA 2021 Workshops. DEXA 2021. Communications in Computer and Information Science, vol 1479. Springer, Cham. https://doi.org/10.1007/978-3-030-87101-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-87101-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87100-0
Online ISBN: 978-3-030-87101-7
eBook Packages: Computer ScienceComputer Science (R0)