[go: up one dir, main page]

Skip to main content

Walk Extraction Strategies for Node Embeddings with RDF2Vec in Knowledge Graphs

  • Conference paper
  • First Online:
Database and Expert Systems Applications - DEXA 2021 Workshops (DEXA 2021)

Abstract

As Knowledge Graphs are symbolic constructs, specialized techniques have to be applied in order to make them compatible with data mining techniques. RDF2Vec is an unsupervised technique that can create task-agnostic numerical representations of the nodes in a KG by extending successful language modeling techniques. The original work proposed the Weisfeiler-Lehman kernel to improve the quality of the representations. However, in this work, we show that the Weisfeiler-Lehman kernel does little to improve walk embeddings in the context of a single Knowledge Graph. As an alternative, we examined five alternative strategies to extract information complementary to basic random walks and compare them on several benchmark datasets to show that research within this field is still relevant for node classification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.w3.org/DesignIssues/Axioms.html.

  2. 2.

    github.com/IBCNServices/pyRDF2Vec.

  3. 3.

    github.com/GillesVandewiele/WalkExperiments.

References

  1. Blondel, V.D., et al.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Experiment 2008(10), P10008 (2008)

    Article  Google Scholar 

  2. Cochez, M., et al.: Biased graph walks for RDF graph embeddings. In: Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, pp. 1–12 (2017)

    Google Scholar 

  3. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75 (2010)

    Article  MathSciNet  Google Scholar 

  4. Goldberg, Y., Levy, O.: word2vec explained: deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722 (2014)

  5. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  6. Hamilton, W.L., et al.: Representation Learning on Graphs: Methods and Applications. Preprint of article to appear in the IEEE Data Engineering Bulletin (2017)

    Google Scholar 

  7. Ivanov, S., Burnaev, E.: Anonymous walk embeddings. arXiv preprint arXiv:1805.11921 (2018)

  8. Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Appl. Network Sci. 5(1), 1–42 (2019). https://doi.org/10.1007/s41109-019-0195-3

    Article  Google Scholar 

  9. Lambiotte, R., et al.: Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 (2008)

  10. Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web 6(2), 167–195 (2015)

    Article  Google Scholar 

  11. Mikolov, T., et al.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems (2013)

    Google Scholar 

  12. Nickel, M., et al.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2015)

    Article  Google Scholar 

  13. Pellegrino, M.A., Altabba, A., Garofalo, M., Ristoski, P., Cochez, M.: GEval: a modular and extensible evaluation framework for graph embedding techniques. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 565–582. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_33

    Chapter  Google Scholar 

  14. Perozzi, B., et al.: Don’t walk, skip! online learning of multi-scale network embeddings. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 258–265 (2017)

    Google Scholar 

  15. Ristoski, P., de Vries, G.K.D., Paulheim, H.: A collection of benchmark datasets for systematic evaluations of machine learning on the semantic web. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 186–194. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_20

    Chapter  Google Scholar 

  16. Ristoski, P., Paulheim, H.: A comparison of propositionalization strategies for creating features from linked open data. In: Linked Data for Knowledge Discovery (2014)

    Google Scholar 

  17. Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery: a comprehensive survey. J. Web Semantics 36, 1–22 (2016)

    Article  Google Scholar 

  18. Ristoski, P., et al.: RDF2vec: RDF graph embeddings and their applications. Semantic Web 10(4), 721–752 (2019)

    Article  Google Scholar 

  19. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  20. Schlötterer, J., et al.: Investigating extensions to random walk based graph embedding. In: 2019 IEEE International Conference on Cognitive Computing (ICCC), pp. 81–89. IEEE (2019)

    Google Scholar 

  21. Sen, P., et al.: Collective classification in network data. AI Mag. 29, 93 (2008)

    Google Scholar 

  22. Shervashidze, N., et al.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Vandewiele, G., et al.: Inducing a decision tree with discriminative paths to classify entities in a knowledge graph. In: SEPDA2019, the 4th International Workshop on Semantics-Powered Data Mining and Analytics, pp. 1–6 (2019)

    Google Scholar 

  24. Vishwanathan, S.V.N., et al.: Graph kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Vries, G.K.D.: A fast approximation of the Weisfeiler-Lehman graph kernel for RDF data. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8188, pp. 606–621. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40988-2_39

    Chapter  Google Scholar 

  26. de Vries, G.K.D., de Rooij, S.: Substructure counting graph kernels for machine learning from RDF data. Web Semantics Sci. Serv. Agents World Wide Web 35, 71–84 (2015)

    Article  Google Scholar 

  27. Weisfeiler, B., Lehman, A.A.: A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia 2(9), 12–16 (1968)

    Google Scholar 

  28. Wilcke, X., et al.: The knowledge graph as the default data model for machine learning. Data Sci. 1, 39–57 (2017). https://doi.org/10.3233/DS-170007

    Article  Google Scholar 

  29. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374 (2015)

    Google Scholar 

Download references

Acknowledgements

Gilles Vandewiele (1S31417N), Bram Steenwinckel (1SA0219N) and Michael Weyns (1SD8821N) are funded by a strategic base research grant of the Fund for Scientific Research Flanders (fwo). Pieter Bonte (1266521N) is funded by a postdoctoral fellowship of the FWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bram Steenwinckel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Steenwinckel, B. et al. (2021). Walk Extraction Strategies for Node Embeddings with RDF2Vec in Knowledge Graphs. In: Kotsis, G., et al. Database and Expert Systems Applications - DEXA 2021 Workshops. DEXA 2021. Communications in Computer and Information Science, vol 1479. Springer, Cham. https://doi.org/10.1007/978-3-030-87101-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87101-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87100-0

  • Online ISBN: 978-3-030-87101-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics