Abstract
Streaming is a model where an input graph is provided one edge at a time, instead of being able to inspect it at will. In this work, we take a parameterized approach by assuming a vertex cover of the graph is given, building on work of Bishnu et al. [COCOONÂ 2020]. We show the further potency of combining this parameter with the Adjacency List streaming model to obtain results for vertex deletion problems. This includes kernels, parameterized algorithms, and lower bounds for the problems of \(\varPi \) -free Deletion, H -free Deletion, and the more specific forms of Cluster Vertex Deletion and Odd Cycle Transversal. We focus on the complexity in terms of the number of passes over the input stream, and the memory used. This leads to a pass/memory trade-off, where a different algorithm might be favourable depending on the context and instance. We also discuss implications for parameterized complexity in the non-streaming setting.
This work is based on the master thesis “Parameterized Algorithms in a Streaming Setting” by the first author. This work is partially supported by the NWO grant OCENW.KLEIN.114 (PACAN).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We consider insertion-only streams throughout this paper.
- 2.
Throughout this paper, memory is measured in bits. The \(\tilde{\mathcal {O}}\) notation hides factors polylogarithmic in n. Note that \(\mathcal {O}(\log n)\) bits is the space required to store (the identifier of) a single vertex or edge.
- 3.
As the Arxiv version contains more results, we refer to this version from here on.
- 4.
Otherwise, removing the entire vertex cover is a trivial solution.
- 5.
Further discussions and proofs for results marked with \(\clubsuit \) appear in the full online version of the paper.
References
Abu-Khzam, F.N.: Maximum common induced subgraph parameterized by vertex cover. Inf. Process. Lett. 114(3), 99–103 (2014)
Abu-Khzam, F.N., Bonnet, É., Sikora, F.: On the complexity of various parameterizations of common induced subgraph isomorphism. Theor. Comput. Sci. 697, 69–78 (2017)
Agarwal, D., McGregor, A., Phillips, J.M., Venkatasubramanian, S., Zhu, Z.: Spatial scan statistics: approximations and performance study. In: Proceedings of SIGKDD 2006, pp. 24–33. ACM (2006)
Agrawal, A., et al.: Parameterized streaming algorithms for min-ones d-sat. In: Proceedings of FSTTCS 2019. LIPIcs, vol. 150, pp. 8:1–8:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)
Bishnu, A., Ghosh, A., Kolay, S., Mishra, G., Saurabh, S.: Fixed-parameter tractability of graph deletion problems over data streams. CoRR abs/1906.05458 (2019)
Bishnu, A., Ghosh, A., Kolay, S., Mishra, G., Saurabh, S.: Fixed parameter tractability of graph deletion problems over data streams. In: Kim, D., Uma, R.N., Cai, Z., Lee, D.H. (eds.) COCOON 2020. LNCS, vol. 12273, pp. 652–663. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58150-3_53
Bishnu, A., Ghosh, A., Mishra, G., Sen, S.: On the streaming complexity of fundamental geometric problems. CoRR abs/1803.06875 (2018)
Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discret. Math. 28(1), 277–305 (2014)
Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)
Chitnis, R., Cormode, G.: Towards a theory of parameterized streaming algorithms. In: Proc. IPEC 2019. LIPIcs, vol. 148, pp. 7:1–7:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)
Chitnis, R., et al.: Kernelization via sampling with applications to finding matchings and related problems in dynamic graph streams. In: Proceedings of SODA 2016, pp. 1326–1344. SIAM (2016)
Chitnis, R.H., Cormode, G., Esfandiari, H., Hajiaghayi, M., Monemizadeh, M.: Brief announcement: New streaming algorithms for parameterized maximal matching & beyond. In: Proceedings of SPAA 2015, pp. 56–58. ACM (2015)
Chitnis, R.H., Cormode, G., Hajiaghayi, M.T., Monemizadeh, M.: Parameterized streaming: Maximal matching and vertex cover. In: Proceedings of SODA 2015, pp. 1234–1251. SIAM (2015)
Cormode, G., Dark, J., Konrad, C.: Independent sets in vertex-arrival streams. In: Proceedings of ICALP 2019. LIPIcs, vol. 132, pp. 45:1–45:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)
Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21275-3
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science, Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4612-0515-9
Fafianie, S., Kratsch, S.: Streaming kernelization. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 275–286. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44465-8_24
Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the streaming model: the value of space. In: Proceedings of SODA 2005, pp. 745–754. SIAM (2005)
Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming model. Theor. Comput. Sci. 348(2–3), 207–216 (2005)
Fomin, F.V., Golovach, P.A., Thilikos, D.M.: On the parameterized complexity of graph modification to first-order logic properties. Theory Comput. Syst. 64(2), 251–271 (2020). https://doi.org/10.1007/s00224-019-09938-8
Fomin, F.V., Jansen, B.M.P., Pilipczuk, M.: Preprocessing subgraph and minor problems: when does a small vertex cover help? J. Comput. Syst. Sci. 80(2), 468–495 (2014)
Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams. In: Abello, J.M., Vitter, J.S. (eds.) Proceedings of DIMACS 1998. DIMACS, vol. 50, pp. 107–118. DIMACS/AMS (1998)
Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)
Jansen, B.M.P., de Kroon, J.J.H.: Preprocessing vertex-deletion problems: characterizing graph properties by low-rank adjacencies. In: Proceedings of SWAT 2020, LIPIcs, vol. 162, pp. 27:1–27:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)
Jansen, B.M.: The power of data reduction: Kernels for fundamental graph problems. Ph.D. thesis, Utrecht University (2013)
Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)
McGregor, A.: Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9–20 (2014)
McGregor, A., Vorotnikova, S., Vu, H.T.: Better algorithms for counting triangles in data streams. In: Proceedings of PODS 2016, pp. 401–411. ACM (2016)
Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends Theor. Comput. Sci. 1(2) (2005)
Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)
Sau, I., dos Santos Souza, U.: Hitting forbidden induced subgraphs on bounded treewidth graphs. In: Proceedings of MFCS 2020. LIPIcs, vol. 170, pp. 82:1–82:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Oostveen, J.J., van Leeuwen, E.J. (2021). Streaming Deletion Problems Parameterized by Vertex Cover. In: Bampis, E., Pagourtzis, A. (eds) Fundamentals of Computation Theory. FCT 2021. Lecture Notes in Computer Science(), vol 12867. Springer, Cham. https://doi.org/10.1007/978-3-030-86593-1_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-86593-1_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86592-4
Online ISBN: 978-3-030-86593-1
eBook Packages: Computer ScienceComputer Science (R0)