[go: up one dir, main page]

Skip to main content

On Finding Separators in Temporal Split and Permutation Graphs

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2021)

Abstract

Disconnecting two vertices s and z in a graph by removing a minimum number of vertices is a fundamental problem in algorithmic graph theory. This (sz)-Separation problem is well-known to be polynomial solvable and serves as an important primitive in many applications related to network connectivity.

We study the NP-hard Temporal (sz) -Separation problem on temporal graphs, which are graphs with fixed vertex sets but edge sets that change over discrete time steps. We tackle this problem by restricting the layers (i.e., graphs characterized by edges that are present at a certain point in time) to specific graph classes.

We restrict the layers of the temporal graphs to be either all split graphs or all permutation graphs (both being perfect graph classes) and provide both intractability and tractability results. In particular, we show that in general Temporal (sz) -Separation remains NP-hard both on temporal split and temporal permutation graphs, but we also spot promising islands of fixed-parameter tractability particularly based on parameterizations that measure the amount of “change over time”.

Based on the Bachelor thesis of N. Maack. H. Molter was supported by the DFG, project MATE (NI 369/17), and by the ISF, grant No. 1070/20. Main part of this work was done while H. Molter was affiliated with TU Berlin. M. Renken was supported by the DFG, project MATE (NI 369/17).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Such walks are also called “non-strict”, whereas “strict” walks require \(t_i < t_{i+1}\). We focus on non-strict walks in this work.

  2. 2.

    While the vertex set of a temporal graph formally remains unchanged, isolated vertices are equivalent to non-existing vertices as far as separators are concerned.

  3. 3.

    We denote by \(\mathcal {G}- X\) the temporal graph resulting from removing vertices in X from the vertex set of \(\mathcal {G}\).

  4. 4.

    Note that it is not sufficient for each layer to be isomorphic to a permutation graph.

References

  1. Bender, E.A., Richmond, L.B., Wormald, N.C.: Almost all chordal graphs split. 38(2), 214–221 (1985). https://doi.org/10.1017/S1446788700023077

  2. Bentert, M., Himmel, A.-S., Nichterlein, A., Niedermeier, R.: Efficient computation of optimal temporal walks under waiting-time constraints. Appl. Netw. Sci. 5(1), 73 (2020). https://doi.org/10.1007/s41109-020-00311-0

    Article  Google Scholar 

  3. Bodlaender, H.L., Kloks, T., Kratsch, D.: Treewidth and pathwidth of permutation graphs. 8, 606–616 (1995). https://doi.org/10.1137/S089548019223992X

  4. Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. 21(4), 375–395 (2000). https://doi.org/10.1016/S0378-8733(99)00019-2

  5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes–A Survey (1999). https://doi.org/10.1137/1.9780898719796

  6. Xuan, B.B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. 14(02), 267–285 (2003). https://doi.org/10.1142/S0129054103001728

  7. Buß, S., Molter, H., Niedermeier, R., Rymar, M.: Algorithmic aspects of temporal betweenness, pp. 2084–2092 (2020). https://doi.org/10.1145/3394486.3403259

  8. Enright, J., Meeks, K., Mertzios, G.B., Zamaraev, V.: Deleting edges to restrict the size of an epidemic in temporal networks, 119, 60–77 (2021) https://doi.org/10.1016/j.jcss.2021.01.007

  9. Enright, J., Meeks, K., Skerman, F.: Assigning times to minimise reachability in temporal graphs, 115, 169–186 (2021). https://doi.org/10.1016/j.jcss.2020.08.001

  10. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. 119, 1–18 (2021). https://doi.org/10.1016/j.jcss.2021.01.005

  11. Even, S., Pnueli, A., Lempel, A.: Permutation graphs and transitive graphs. 19(3), 400–410 (1972). https://doi.org/10.1145/321707.321710

  12. Fluschnik, T., Molter, H., Niedermeier, R., Renken, M., Zschoche, P.: Temporal graph classes: a view through temporal separators. 806, 197–218 (2020). https://doi.org/10.1016/j.tcs.2019.03.031

  13. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (2004). ISBN 978-0-444-51530-8

    Google Scholar 

  14. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: distance from triviality. In: Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28639-4_15

    Chapter  Google Scholar 

  15. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. 64(4), 820–842 (2002). https://doi.org/10.1006/jcss.2002.1829

  16. Kendall, M.G.: A new measure of rank correlation. 30(1/2), 81–93 (1938). https://doi.org/10.2307/2332226

  17. Maack, N., Molter, H., Niedermeier, R., Renken, M.: On finding separators in temporal split and permutation graphs (2021). http://arxiv.org/abs/2105.12003

  18. Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network optimization subject to connectivity constraints. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 657–668. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2_57

    Chapter  Google Scholar 

  19. Niedermeier, R.: Invitation to fixed-parameter algorithms. (2006). https://doi.org/10.1093/ACPROF:OSO/9780198566076.001.0001

  20. Sen, A., Deng, H., Guha, S.: On a graph partition problem with application to VLSI layout. 43(2), 87–94 (1992). https://doi.org/10.1016/0020-0190(92)90017-P

  21. Zschoche, P., Fluschnik, T., Molter, H., Niedermeier, R.: The complexity of finding small separators in temporal graphs. 107, 72–92 (2020). https://doi.org/10.1016/j.jcss.2019.07.006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Molter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maack, N., Molter, H., Niedermeier, R., Renken, M. (2021). On Finding Separators in Temporal Split and Permutation Graphs. In: Bampis, E., Pagourtzis, A. (eds) Fundamentals of Computation Theory. FCT 2021. Lecture Notes in Computer Science(), vol 12867. Springer, Cham. https://doi.org/10.1007/978-3-030-86593-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86593-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86592-4

  • Online ISBN: 978-3-030-86593-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics