[go: up one dir, main page]

Skip to main content

The Satisfiability Problem for a Quantitative Fragment of PCTL

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2021)

Abstract

We give a sufficient condition under which every finite-satisfiable formula of a given PCTL fragment has a model with at most doubly exponential number of states (consequently, the finite satisfiability problem for the fragment is in \(\mathbf{2}\text {-}{} \mathbf{EXPSPACE}\)). The condition is semantic and it is based on enforcing a form of “progress” in non-bottom SCCs contributing to the satisfaction of a given PCTL formula. We show that the condition is satisfied by PCTL fragments beyond the reach of existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Although there are uncountably many Markov chains with n states, the edge probabilities can be represented symbolically by variables, and the satisfiability of a given PCTL formula in a Markov chain with n states can then be encoded in the existential fragment of first-order theory of the reals. This construction is presented in [13].

  2. 2.

    In [22], the formula \(\psi \) has the same structure but uses qualitative probability constraints.

  3. 3.

    We do not include formulae with the trivial “\({\ge } 0\)” probability constraint.

References

  1. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  2. Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time logic with fairness. Distrib. Comput. 11(3), 125–155 (1998)

    Article  Google Scholar 

  3. Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B., Barringer, H., Pnueli, A. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 62–74. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51803-7_22

    Chapter  MATH  Google Scholar 

  4. Bertrand, N., Fearnley, J., Schewe, S.: Bounded satisfiability for PCTL. In: Proceedings of CSL 2012. Leibniz International Proceedings in Informatics, vol. 16, pp. 92–106. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2012)

    Google Scholar 

  5. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0_70

    Chapter  MATH  Google Scholar 

  6. Billingsley, P.: Probability and Measure. Wiley, Hoboken (1995)

    MATH  Google Scholar 

  7. Brázdil, T., Brožek, V., Forejt, V., Kučera, A.: Stochastic games with branching-time winning objectives. In: Proceedings of LICS 2006, pp. 349–358. IEEE Computer Society Press (2006)

    Google Scholar 

  8. Brázdil, T., Forejt, V., Křetínský, J., Kučera, A.: The satisfiability problem for probabilistic CTL. In: Proceedings of LICS 2008, pp. 391–402. IEEE Computer Society Press (2008)

    Google Scholar 

  9. Brázdil, T., Forejt, V., Křetínský, J., Kučera, A.: The satisfiability problem for probabilistic CTL. Technical report FIMU-RS-2008-03, Faculty of Informatics, Masaryk University (2008)

    Google Scholar 

  10. Brázdil, T., Forejt, V., Kučera, A.: Controller synthesis and verification for Markov decision processes with qualitative branching time objectives. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 148–159. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_13

    Chapter  MATH  Google Scholar 

  11. Brázdil, T., Kučera, A., Stražovský, O.: On the decidability of temporal properties of probabilistic pushdown automata. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 145–157. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9_12

    Chapter  Google Scholar 

  12. Chakraborty, S., Katoen, J.: On the satisfiability of some simple probabilistic logics. In: Proceedings of LICS 2016, pp. 56–65 (2016)

    Google Scholar 

  13. Chodil, M., Kučera, A.: The satisfiability problem for a quantitative fragment of PCTL. arXiv:2107.03794 [cs.LO] (2021)

  14. Emerson, E.: Temporal and modal logic. In: Handbook of Theoretical Computer Science B, pp. 995–1072 (1991)

    Google Scholar 

  15. Emerson, E., Halpern, J.: Decision procedures and expressiveness in the temporal logic of branching time. In: Proceedings of STOC 1982, pp. 169–180. ACM Press (1982)

    Google Scholar 

  16. Esparza, J., Kučera, A., Mayr, R.: Model-checking probabilistic pushdown automata. Logical Methods Comput. Sci. 2(1:2), 1–31 (2006)

    Google Scholar 

  17. Etessami, K., Yannakakis, M.: Model checking of recursive probabilistic systems. ACM Trans. Comput. Logic 13 (2012)

    Google Scholar 

  18. Fischer, M., Ladner, R.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18, 194–211 (1979)

    Article  MathSciNet  Google Scholar 

  19. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects Comput. 6, 512–535 (1994)

    Article  Google Scholar 

  20. Hart, S., Sharir, M.: Probabilistic temporal logic for finite and bounded models. In: Proceedings of POPL 1984, pp. 1–13. ACM Press (1984)

    Google Scholar 

  21. Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: Proceedings of LICS 1997, pp. 111–122. IEEE Computer Society Press (1997)

    Google Scholar 

  22. Křetínský, J., Rotar, A.: The satisfiability problem for unbounded fragments of probabilistic CTL. In: Proceedings of CONCUR 2018. Leibniz International Proceedings in Informatics, vol. 118, pp. 32:1–32:16. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018)

    Google Scholar 

  23. Lehman, D., Shelah, S.: Reasoning with time and chance. Inf. Control 53, 165–198 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The work is supported by the Czech Science Foundation, Grant No. 21-24711S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonín Kučera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chodil, M., Kučera, A. (2021). The Satisfiability Problem for a Quantitative Fragment of PCTL. In: Bampis, E., Pagourtzis, A. (eds) Fundamentals of Computation Theory. FCT 2021. Lecture Notes in Computer Science(), vol 12867. Springer, Cham. https://doi.org/10.1007/978-3-030-86593-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86593-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86592-4

  • Online ISBN: 978-3-030-86593-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics