[go: up one dir, main page]

Skip to main content

Accountable Federated Machine Learning in Government: Engineering and Management Insights

  • Conference paper
  • First Online:
Electronic Participation (ePart 2021)

Abstract

Machine learning offers promising capabilities to improve administrative procedures. At the same time, adequate training of models using traditional learning techniques requires the collection and storage of enough training data in a central place. Unfortunately, due to legislative and jurisdictional constraints, data in a central place is scarce and training a model becomes unfeasible. Against this backdrop, federated machine learning, a technique to collaboratively train models without transferring data to a centralized location, has been recently proposed. With each government entity keeping their data private, new applications that previously were impossible now can be a reality. In this paper, we demonstrate that accountability for the federated machine learning process becomes paramount to fully overcoming legislative and jurisdictional constraints. In particular, it ensures that all government entities' data are adequately included in the model and that evidence on fairness and reproducibility is curated towards trustworthiness. We also present an analysis framework suitable for governmental scenarios and illustrate its exemplary application for online citizen participation scenarios. We discuss our findings in terms of engineering and management implications: feasibility evaluation, general architecture, involved actors as well as verifiable claims for trustworthy machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Kuala Lumpur (2016)

    MATH  Google Scholar 

  2. Agrawal, A., Gans, J., Goldfarb, A.: Prediction Machines: The Simple Economics of Artificial Intelligence. Harvard Business Press, Boston (2018)

    Google Scholar 

  3. Winfield, A.F., Michael, K., Pitt, J., Evers, V.: Machine ethics: the design and governance of ethical AI and autonomous systems [scanning the issue]. Proc. IEEE 107, 509–517 (2019)

    Article  Google Scholar 

  4. Dwivedi, Y.K., et al.: Artificial intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 101994 (2019)

    Google Scholar 

  5. Sun, T.Q., Medaglia, R.: Mapping the challenges of artificial intelligence in the public sector: evidence from public healthcare. Gov. Inf. Q. (2018)

    Google Scholar 

  6. AUPP Council: Statement on algorithmic transparency and accountability. Commun. ACM (2017)

    Google Scholar 

  7. Scholl, H.J., Klischewski, R.: E-government integration and interoperability: framing the research agenda. Int. J. Publ. Adm. 30, 889–920 (2007)

    Article  Google Scholar 

  8. Wang, F.: Understanding the dynamic mechanism of interagency government data sharing. Gov. Inf. Q. 35, 536–546 (2018)

    Article  Google Scholar 

  9. Janssen, M., van den Hoven, J.: Big and open linked data (BOLD) in government: a challenge to transparency and privacy? Gov. Inf. Q. 32, 363–368 (2015). https://doi.org/10.1016/j.giq.2015.11.007

    Article  Google Scholar 

  10. Howard, A., Borenstein, J.: The ugly truth about ourselves and our robot creations: the problem of bias and social inequity. Sci. Eng. Ethics 24, 1521–1536 (2018)

    Article  Google Scholar 

  11. Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M., Floridi, L.: Artificial intelligence and the ‘good society’: the US, EU, and UK approach. Sci. Eng. Ethics 24, 505–528 (2018)

    Google Scholar 

  12. Brundage, M., et al.: Toward trustworthy AI development: mechanisms for supporting verifiable claims. arXiv preprint arXiv:2004.07213 (2020)

  13. Scholta, H., Niemann, M., Halsbenning, S., Räckers, M., Becker, J.: Fast and Federal—Policies for Next-Generation Federalism in Germany (2019)

    Google Scholar 

  14. Scholta, H., Balta, D., Räckers, M., Becker, J., Krcmar, H.: Standardization of forms in governments. Bus. Inf. Syst. Eng. 62, 535–560 (2020)

    Article  Google Scholar 

  15. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship to verifiability. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, pp. 526–535. ACM (2010)

    Google Scholar 

  16. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  17. Kairouz, P., et al.: Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)

  18. Bovens, M.: Analysing and assessing accountability: a conceptual framework 1. Eur. Law J. 13, 447–468 (2007)

    Article  Google Scholar 

  19. Eriksén, S.: Designing for accountability. In: Proceedings of the Second Nordic Conference on Human-Computer Interaction, pp. 177–186. ACM (2002)

    Google Scholar 

  20. Bloomfield, R., Rushby, J.: Assurance 2.0: a manifesto. arXiv preprint arXiv:2004.10474 (2020)

  21. Cleland-Huang, J., Gotel, O., Zisman, A.: Software and Systems Traceability. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2239-5

    Book  Google Scholar 

  22. Cleland-Huang, J., Gotel, O.C., Huffman Hayes, J., Mäder, P., Zisman, A.: Software traceability: trends and future directions. In: Future of Software Engineering Proceedings, pp. 55–69 (2014)

    Google Scholar 

  23. Gotel, O., et al.: Traceability fundamentals. In: Cleland-Huang, J., Gotel, O., Zisman, A. (eds.) Software and Systems Traceability, pp. 3–22. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2239-5_1

    Chapter  Google Scholar 

  24. Baldoni, M., Baroglio, C., Micalizio, R., Tedeschi, S.: Accountability and responsibility in business processes via agent technology. In: Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion (RCRA 2018), pp. 1–18. CEUR-WS (2018)

    Google Scholar 

  25. Yao, J., Chen, S., Levy, D.: Accountability-based compliance control of collaborative business processes in cloud systems. In: Nepal, S., Pathan, M. (eds.) Security, Privacy and Trust in Cloud Systems, pp. 345–374. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-38586-5_12

    Chapter  Google Scholar 

  26. Sadiq, S., Governatori, G., Namiri, K.: Modeling control objectives for business process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_12

    Chapter  Google Scholar 

  27. Hashmi, M., Governatori, G., Lam, H.-P., Wynn, M.T.: Are we done with business process compliance: state of the art and challenges ahead. Knowl. Inf. Syst. 57(1), 79–133 (2018). https://doi.org/10.1007/s10115-017-1142-1

    Article  Google Scholar 

  28. Balta, D., Kuhn, P., Sellami, M., Kulus, D., Lieven, C., Krcmar, H.: How to streamline AI application in government? A case study on citizen participation in Germany. In: Lindgren, I., et al. (eds.) EGOV 2019. LNCS, vol. 11685, pp. 233–247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27325-5_18

    Chapter  Google Scholar 

  29. Balta, D.: Effective Management of Standardizing in E-Government, pp. 149–175. Corporate Standardization Management and Innovation (2019). https://doi.org/10.4018/978-1-5225-9008-8.ch008

  30. Balta, D., Krcmar, H.: Managing standardization in eGovernment: a coordination theory based analysis framework. In: Parycek, P., et al. (eds.) EGOV 2018. LNCS, vol. 11020, pp. 60–72. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98690-6_6

    Chapter  Google Scholar 

  31. Gregor, S.: The nature of theory in information systems. MIS Q. 611–642 (2006)

    Google Scholar 

  32. Goldkuhl, G.: Pragmatism vs interpretivism in qualitative information systems research. Eur. J. Inf. Syst. 21, 135–146 (2012)

    Article  Google Scholar 

  33. Wilde, T., Hess, T.: Forschungsmethoden der Wirtschaftsinformatik. Wirtschaftsinformatik 49(4), 280–287 (2007). https://doi.org/10.1007/s11576-007-0064-z

    Article  Google Scholar 

  34. Nissenbaum, H.: Computing and accountability, https://link.galegroup.com/apps/doc/A15020194/AONE?sid=lms. Accessed 06 Oct 2019

  35. Beckers, K., Landthaler, J., Matthes, F., Pretschner, A., Waltl, B.: Data accountability in socio-technical systems. In: Schmidt, R., Guédria, W., Bider, I., Guerreiro, S. (eds.) BPMDS/EMMSAD -2016. LNBIP, vol. 248, pp. 335–348. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39429-9_21

    Chapter  Google Scholar 

  36. Ludwig, H., et al.: IBM Federated Learning: An Enterprise Framework White paper V0.1. arXiv:2007.10987 [cs] (2020)

  37. Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., He, B.: A survey on federated learning systems: vision, hype and reality for data privacy and protection. arXiv preprint arXiv:1907.09693 (2019)

  38. Susha, I.: Grönlund, \AAke: eParticipation research: systematizing the field. Gov. Inf. Q. 29, 373–382 (2012)

    Article  Google Scholar 

  39. Androutsopoulou, A., Karacapilidis, N., Loukis, E., Charalabidis, Y.: Transforming the communication between citizens and government through AI-guided chatbots. Gov. Inf. Q. (2018)

    Google Scholar 

  40. Maragoudakis, M., Loukis, E., Charalabidis, Y.: A review of opinion mining methods for analyzing citizens’ contributions in public policy debate. In: Tambouris, E., Macintosh, A., de Bruijn, H. (eds.) ePart 2011. LNCS, vol. 6847, pp. 298–313. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23333-3_26

    Chapter  Google Scholar 

  41. Greco, S., Molinaro, C.: Datalog and logic databases. Synth. Lect. Data Manag. 7, 1–169 (2015)

    Article  Google Scholar 

  42. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp. 1–15 (2018)

    Google Scholar 

  43. Mothukuri, V., Parizi, R.M., Pouriyeh, S., Huang, Y., Dehghantanha, A., Srivastava, G.: A survey on security and privacy of federated learning. Futur. Gener. Comput. Syst. 115, 619–640 (2021)

    Article  Google Scholar 

  44. Verma, D., White, G., de Mel, G.: Federated AI for the enterprise: a web services based implementation. In: 2019 IEEE International Conference on Web Services (ICWS), pp. 20–27. IEEE (2019)

    Google Scholar 

  45. Song, L., Wu, H., Ruan, W., Han, W.: SoK: training machine learning models over multiple sources with privacy preservation. arXiv preprint arXiv:2012.03386 (2020)

  46. Torkzadehmahani, R., et al.: Privacy-preserving artificial intelligence techniques in biomedicine. arXiv preprint arXiv:2007.11621 (2020)

  47. Arnold, M., et al.: FactSheets: increasing trust in AI services through supplier’s declarations of conformity. IBM J. Res. Dev. 63, 6–1 (2019)

    Article  Google Scholar 

  48. Spanoudakis, G., Zisman, A.: Software traceability: a roadmap. In: Handbook of Software Engineering and Knowledge Engineering: Recent Advances, vol. 3, pp. 395–428. World Scientific (2005)

    Google Scholar 

  49. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: Computational accountability. In: Deep Understanding and Reasoning: A Challenge for Next-generation Intelligent Agents, URANIA 2016, pp. 56–62. CEUR Workshop Proceedings (2016)

    Google Scholar 

  50. Piorkowski, D., González, D., Richards, J., Houde, S.: Towards evaluating and eliciting high-quality documentation for intelligent systems. arXiv:2011.08774 [cs] (2020)

Download references

Acknowledgements

This research was partially funded by the Bavarian Ministry of Ministry of Economic Affairs, Regional Development and Energy in the context of the project BayernCloud (funding code ‘AZ: 20-13-3410.1-01A-2017’).

We thank our reviewers for their careful reading and their constructive remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dian Balta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balta, D. et al. (2021). Accountable Federated Machine Learning in Government: Engineering and Management Insights. In: Edelmann, N., et al. Electronic Participation. ePart 2021. Lecture Notes in Computer Science(), vol 12849. Springer, Cham. https://doi.org/10.1007/978-3-030-82824-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82824-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82823-3

  • Online ISBN: 978-3-030-82824-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics