[go: up one dir, main page]

Skip to main content

Image Super-Resolution Based on Residual Block Dense Connection

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2021)

Abstract

Image super-resolution models based on convolution neural networks are facing problems such as gradient disappearance, gradient explosion, and insufficient feature utilization. This paper proposes an image super-resolution model based on feature fusion of dense connection of residual blocks. The key contributions are as follows: (1) residual block mechanism, which can make full use of the hierarchical features extracted from the residual block to alleviate the shallow feature losing. (2) In order to extract more representative key features, the feature of each level extracted from residual blocks is input into subsequent residual blocks by dense connection mechanism. (3) local feature fusion is used in a single residual block, and global feature fusion is used in the tail of the model, so that the shallow key information can be transferred to the reconstruction layer as much as possible. Empirical experiment is deployed on four benchmark test sets (Set5, Set14, Urban100 and BSDS100), the results show that both the peak signal-to-noise ratio and structural similarity are improved. (Source code: https://github.com/brown-cats/SR_RFB).

A. Gao and S. Liu—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harris, J.L.: Diffraction and resolving power. J. Opt. Soc. Am. 54, 931–936 (1964)

    Article  Google Scholar 

  2. Tsai, R., Huang, T.: Multiframe image restoration and registration. Adv. Comput. Vis. Image Process 1 (1984)

    Google Scholar 

  3. Kim, S.P., Bose, N.K.: Recursive reconstruction of high resolution image from noisy undersampled multiframes. IEEE Trans. Acoustics Speech Signal Process. 38, 1013–1027 (1990)

    Article  Google Scholar 

  4. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a Deep Convolutional Network for Image Super-Resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  5. Dong, C., Loy, C.C., He, K.M., Tang, X.O.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38, 295–307 (2016)

    Article  Google Scholar 

  6. Wang, Z., Chen, J., Hoi, S.: Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.2020.2982166

    Article  Google Scholar 

  7. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38, 295–307 (2016)

    Article  Google Scholar 

  8. Kim, J., Lee, J.K., Lee, K.M.: Accurate Image Super-Resolution Using Very Deep Convolutional Networks (2016)

    Google Scholar 

  9. Shocher, A., Cohen, N., Irani, M., IEEE: “Zero-shot” super-resolution using deep internal learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3118–3126 (2018)

    Google Scholar 

  10. Shi, W., Caballero, J., Huszár, F., Totz, J., Wang, Z.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  11. Dong, C., Loy, C.C., Tang, X.: Accelerating the Super-Resolution Convolutional Neural Network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  12. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  13. Lai, W.-S., Huang, J.-B., Ahuja, N., Yang, M.-H., IEEE: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: 30th IEEE Conference on Computer Vision and Pattern Recognition, pp. 5835–5843 (2017)

    Google Scholar 

  14. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for single image super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.2020.3002836

    Article  Google Scholar 

  15. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  16. Mao, X.-J., Shen, C., Yang, Y.-B.: Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections (2016)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition (2016)

    Google Scholar 

  18. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  19. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  20. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual Dense Network for Image Super-Resolution. IEEE (2018)

    Google Scholar 

  21. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.-L.: Low-Complexity Single Image Super-Resolution Based on Nonnegative Neighbor Embedding (2012)

    Google Scholar 

  22. Zeyde, R., Elad, M., Protter, M.: On Single Image Scale-Up Using Sparse-Representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  23. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898–916 (2011)

    Article  Google Scholar 

  24. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  25. Zhang, X., Zheng, Z., Asanuma, I., Xu, Y.: A new kind of super-resolution reconstruction algorithm based on the ICM and the bicubic interpolation. Inform. Japan 16, 8027–8036 (2008)

    Google Scholar 

  26. Shi, W., et al., IEEE: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  27. Kim, J., Lee, J.K., Lee, K.M., IEEE: Accurate image super-resolution using very deep convolutional networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  28. Kim, J., Lee, J.K., Lee, K.M.: Deeply-Recursive Convolutional Network for Image Super-Resolution (2015)

    Google Scholar 

  29. Ledig, C., et al., IEEE: Photo-realistic single image super-resolution using a generative adversarial network. In: 30th Ieee Conference on Computer Vision and Pattern Recognition, pp. 105–114 (2017)

    Google Scholar 

Download references

Acknowledgement

This paper is supported by National Natural Science Foundation of China under Grant Nos. 61502198, 61472161, 61402195, 61103091, U19A2061 and the Science and Technology Development Plan of Jilin Province under Grant No. 20160520099JH, 20150101051JC, 20190302117GX, 20180101334JC, 2019C053-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyang Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Gao, A., Liu, S., Jia, H., Shao, Y., Tang, W. (2021). Image Super-Resolution Based on Residual Block Dense Connection. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management. KSEM 2021. Lecture Notes in Computer Science(), vol 12817. Springer, Cham. https://doi.org/10.1007/978-3-030-82153-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82153-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82152-4

  • Online ISBN: 978-3-030-82153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics