[go: up one dir, main page]

Skip to main content

Scar-Related Ventricular Arrhythmia Prediction from Imaging Using Explainable Deep Learning

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12738))

Abstract

The aim of this study is to create an automatic framework for sustained ventricular arrhythmia (VA) prediction using cardiac computed tomography (CT) images. We built an image processing pipeline and a deep learning network to explore the relation between post-infarct left ventricular myocardium thickness and previous occurrence of VA. Our pipeline generated a 2D myocardium thickness map (TM) from the 3D imaging input. Our network consisted of a conditional variational autoencoder (CVAE) and a classifier model. The CVAE was used to compress the TM into a low dimensional latent space, then the classifier utilised the latent variables to predict between healthy and VA patient. We studied the network on a large clinical database of 504 healthy and 182 VA patients. Using our method, we achieved a mean classification accuracy of \(75\% \pm 4\) on the testing dataset, compared to \(71\% \pm 4\) from the classification using the classical left ventricular ejection fraction (LVEF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pypi.org/project/pyezzi/.

  2. 2.

    https://vtk.org/.

  3. 3.

    https://github.com/martanunez/LV_flattening.

  4. 4.

    https://www.tensorflow.org/.

References

  1. Abbet, C., Zlobec, I., Bozorgtabar, B., Thiran, J.-P.: Divide-and-rule: self-supervised learning for survival analysis in colorectal cancer. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 480–489. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_46

    Chapter  Google Scholar 

  2. Biffi, C., et al.: Learning interpretable anatomical features through deep generative models: application to cardiac remodeling. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 464–471. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_52

    Chapter  Google Scholar 

  3. Cedilnik, N., et al: Fast personalized electrophysiological models from CT images for ventricular tachycardia ablation planning. EP-Europace 20(3), iii94-iii101 (2018)

    Google Scholar 

  4. Cedilnik, N., Duchateau, J., Sacher, F., Jaïs, P., Cochet, H., Sermesant, M.: Fully automated electrophysiological model personalisation framework from CT Imaging. In: FIMH 2019–10th International Conference on Functional Imaging and Modeling of the Heart, pp. 325–333. Bordeaux, France (June 2019)

    Google Scholar 

  5. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks. In: Proceedings - 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018, pp. 839–847 (2018)

    Google Scholar 

  6. Dercksen, K., Bulten, W., Litjens, G.: Dealing with label scarcity in computational pathology: A use case in prostate cancer classification. arXiv (2019)

    Google Scholar 

  7. Efron, B., Rogosa, D., Tibshirani, R.: Resampling Methods of Estimation, vol. 19. Elsevier, second edition edn. (2015)

    Google Scholar 

  8. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. In: An Introduction to the Bootstrap. CRC Monographs on Statistics and Applied Probability, CRC Press (1993)

    Google Scholar 

  9. Mahida, S., et al.: Cardiac imaging in patients with ventricular tachycardia. Circulation 136(25), 2491–2507 (2017)

    Google Scholar 

  10. Nielsen, J.C., et al.: European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: Use the right tool for the right outcome. Europace (2020)

    Google Scholar 

  11. Nuñez-Garcia, M., Cedilnik, N., Jia, S., Sermesant, M., Cochet, H.: Automatic multiplanar CT reformatting from trans-axial into left ventricle short-axis view. In: STACOM 2020–11th International Workshop on Statistical Atlases and Computational Models of the Heart. Lima, Peru (October 2020)

    Google Scholar 

  12. NuÃez-Garcia, M., et al.: Fast quasi-conformal regional flattening of the left atrium. IEEE Trans. Vis. Comput. Graph. 26(8), 2591–2602 (2020)

    Google Scholar 

  13. Sohn, K., Yan, X., Lee, H.: Learning structured output representation using deep conditional generative models. In: Advances in Neural Information Processing Systems, pp. 3483–3491 (2015)

    Google Scholar 

  14. Yezzi, A.J., Prince, J.L.: An Eulerian PDE approach for computing tissue thickness. IEEE Trans. Med. Imaging 22(10), 1332–1339 (2003)

    Google Scholar 

Download references

Acknowledgement

Part of the authors’ work has been supported by the French Government, through the National Research Agency (ANR) 3IA Côte d’Azur (ANR-19-P3IA-0002), IHU Liryc (ANR- 10-IAHU-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Sermesant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ly, B., Finsterbach, S., Nuñez-Garcia, M., Cochet, H., Sermesant, M. (2021). Scar-Related Ventricular Arrhythmia Prediction from Imaging Using Explainable Deep Learning. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds) Functional Imaging and Modeling of the Heart. FIMH 2021. Lecture Notes in Computer Science(), vol 12738. Springer, Cham. https://doi.org/10.1007/978-3-030-78710-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78710-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78709-7

  • Online ISBN: 978-3-030-78710-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics