[go: up one dir, main page]

Skip to main content

Application of the Ant Colony Algorithm for Routing in Next Generation Programmable Networks

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

New generation 5G technology provides mechanisms for network resources management to efficiently control dynamic bandwidth allocation and assure the Quality of Service (QoS) in terms of KPIs (Key Performance Indicators) that is important for delay or loss sensitive Internet of Things (IoT) services. To meet such application requirements, network resource management in Software Defined Networking (SDN), supported by Artificial Intelligence (AI) algorithms, comes with the solution. In our approach, we propose the solution where AI is responsible for controlling intent-based routing in the SDN network. The paper focuses on algorithms inspired by biology, i.e., the ant algorithm for selecting the best routes in a network with an appropriately defined objective function and constraints. The proposed algorithm is compared with the Mixed Integer Programming (MIP) based algorithm and a greedy algorithm. Performance of the above algorithms is tested and compared in several network topologies. The obtained results confirm that the ant colony algorithm is a viable alternative to the MIP and greedy algorithms and provide the base for further enhanced research for its effective application to programmable networks.

The work on this paper was done in FlexNet project in EUREKA CELTIC-NEXT Cluster for next-generation communications under partial funding of The National Centre for Research and Development in Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abar, T., Letaifa, A., El Asmi, S.: Machine learning based QoE prediction in SDN networks, pp. 1395–1400 (2017). https://doi.org/10.1109/IWCMC.2017.7986488

  2. Bera, S., Misra, S., Vasilakos, A.V.: Software-defined networking for internet of things: a survey. IEEE Internet Things J. 4(6), 1994–2008 (2017). https://doi.org/10.1109/JIOT.2017.2746186

    Article  Google Scholar 

  3. Bokhari, F.S., Záruba, G.V.: On the use of smart ants for efficient routing in wireless mesh networks. CoRR abs/1209.0550 (2012). http://arxiv.org/abs/1209.0550

  4. Chen, B., Wan, J., Lan, Y., Imran, M., Li, D., Guizani, N.: Improving cognitive ability of edge intelligent IIOT through machine learning. IEEE Netw. 33(5), 61–67 (2019). https://doi.org/10.1109/MNET.001.1800505

    Article  Google Scholar 

  5. Choque, J., et al.: Flexnet: flexible networks for IoT based services. In: 2020 23rd International Symposium on Wireless Personal Multimedia Communications (WPMC), pp. 1–6 (2020). https://doi.org/10.1109/WPMC50192.2020.9309486

  6. Dinh, K.T., Kukliński, S., Osiński, T., Wytrebowicz, J.: Heuristic traffic engineering for SDN. J. Inf. Telecommun. 4(3), 251–266 (2020). https://doi.org/10.1080/24751839.2020.1755528

  7. Dobrijevic, O., Santl, M., Matijasevic, M.: Ant colony optimization for QoE-centric flow routing in software-defined networks. In: 2015 11th International Conference on Network and Service Management (CNSM), pp. 274–278 (2015). https://doi.org/10.1109/CNSM.2015.7367371

  8. Flexnet: Flexible IoT networks for value creators. (2020). https://www.celticnext.eu/project-flexnet/

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA \(\copyright \)1990 (1990)

    Google Scholar 

  10. Guan, Y., Gao, M., Bai, Y.: Double-ant colony based UAV path planning algorithm. In: Proceedings of the 2019 11th International Conference on Machine Learning and Computing, pp. 258–262. ICMLC 2019. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3318299.3318376

  11. Hamrioui, S., Lorenz, P.: Bio inspired routing algorithm and efficient communications within IoT. IEEE Netw. 31(5), 74–79 (2017). https://doi.org/10.1109/MNET.2017.1600282

    Article  Google Scholar 

  12. IETF: Software-defined networking: A perspective from within a service provider environment (2017). https://tools.ietf.org/html/rfc7149

  13. ifstat: ifstat - linux man page. (2017). https://linux.die.net/man/1/ifstat

  14. Jin, Y., Gormus, S., Kulkarni, P., Sooriyabandara, M.: Content centric routing in IoT networks and its integration in RPL. Comput. Commun. 89(C), 87–104 (2016). https://doi.org/10.1016/j.comcom.2016.03.005

  15. Kozdrowski, S., Cichosz, P., Paziewski, P., Sujecki, S.: Machine learning algorithms for prediction of the quality of transmission in optical networks. Entropy (Basel, Switzerland), 23(1), 7 (2021). https://doi.org/10.3390/e23010007

  16. Liu, X., Li, S., Wang, M.: An ant colony based routing algorithm for wireless sensor network. Int. J. Future Gen. Commun. Netw. 9, 75–86 (2016). https://doi.org/10.14257/ijfgcn.2016.9.6.08

  17. Liyanage, M., Ylianttila, M., Gurtov, A.: Securing the control channel of software-defined mobile networks. In: Proceeding of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1–6 (2014). https://doi.org/10.1109/WoWMoM.2014.6918981

  18. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep reinforcement learning. In: Proceedings of the 15th ACM Workshop on Hot Topics in Networks, pp. 50–56. HotNets 2016. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/3005745.3005750

  19. Mestres, A., et al.: Knowledge-defined networking. SIGCOMM Comput. Commun. Rev. 47(3), 2–10 (2017). https://doi.org/10.1145/3138808.3138810

  20. Mishra, P., Puthal, D., Tiwary, M., Mohanty, S.P.: Software defined IoT systems: Properties, state of the art, and future research. IEEE Wirel. Commun. 26(6), 64–71 (2019). https://doi.org/10.1109/MWC.001.1900083

    Article  Google Scholar 

  21. Municio, E., Latré, S., Marquez-Barja, J.M.: Extending network programmability to the things overlay using distributed industrial IoT protocols. IEEE Trans. Ind. Inform. 17(1), 251–259 (2021). https://doi.org/10.1109/TII.2020.2972613

    Article  Google Scholar 

  22. Municio, E., Marquez-Barja, J., Latré, S., Vissicchio, S.: Whisper: programmable and flexible control on industrial IoT networks. Sensors, 18(11), 4048 (2018). https://doi.org/10.3390/s18114048

  23. Murat Karakus, A.D.: Quality of service in software defined networking: a survey. J. Netw. Comput. Appl. 80, 200–218 (2017). https://doi.org/10.1016/j.jnca.2016.12.019

  24. de la Oliva, A., et al.: 5g-transformer: Slicing and orchestrating transport networks for industry verticals. IEEE Commun. Mag. 56, 78–84 (2018). https://doi.org/10.1109/MCOM.2018.1700990

  25. Omar, H.: Intelligent traffic information system based on integration of Internet of Things and agent technology. Int. J. Adv. Comput. Sci. Appl. 6(2), 37–43 (2015). https://doi.org/10.14569/IJACSA.2015.060206

  26. ONOS: ONOS Project. (2017). https://wiki.onosproject.org/

  27. Open Networking Foundation: Software-Defined Networking: The new norm for networks. White Paper (2012)

    Google Scholar 

  28. Rothenberg, C.E., et al.: Revisiting routing control platforms with the eyes and muscles of software-defined networking. In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks, pp. 13–18. HotSDN 2012, Association for Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2342441.2342445

  29. sFlow: sflow-rt documentation (2017). https://sflow-rt.com/reference.php

  30. Thubert, P., Palattella, M., Engel, T.: 6tisch centralized scheduling: When SDN meet IoT (2015). https://doi.org/10.1109/CSCN.2015.7390418

  31. Yao, H., Mai, T., Xu, X., Zhang, P., Li, M., Liu, Y.: Networkai: an intelligent network architecture for self-learning control strategies in software defined networks. IEEE Internet Things J. 5(6), 4319–4327 (2018). https://doi.org/10.1109/JIOT.2018.2859480

    Article  Google Scholar 

  32. Zhao, Y., Le, Y., Zhang, X., Geng, G., Zhang, W., Sun, Y.: A survey of networking applications applying the software defined networking concept based on machine learning. IEEE Access, 795397–95417 (2019). https://doi.org/10.1109/ACCESS.2019.2928564

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Kozdrowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozdrowski, S., Banaszek, M., Jedrzejczak, B., Żotkiewicz, M., Kopertowski, Z. (2021). Application of the Ant Colony Algorithm for Routing in Next Generation Programmable Networks. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12745. Springer, Cham. https://doi.org/10.1007/978-3-030-77970-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77970-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77969-6

  • Online ISBN: 978-3-030-77970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics