Abstract
Fake news, hostility, defamation are some of the biggest problems faced in social media. We present the findings of the shared tasks (https://constraint-shared-task-2021.github.io/) conducted at the CONSTRAINT Workshop at AAAI 2021. The shared tasks are ‘COVID19 Fake News Detection in English’ and ‘Hostile Post Detection in Hindi’. The tasks attracted 166 and 44 team submissions respectively. The most successful models were BERT or its variations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
Results for all the teams is available at https://competitions.codalab.org/competitions/26655#learn_the_details-result.
- 6.
Results for all the teams is available at https://competitions.codalab.org/competitions/26654#learn_the_details-submission-details.
References
A brief history of fake news. https://www.cits.ucsb.edu/fake-news/brief-history
Fake news alert. https://www.who.int/india/emergencies/coronavirus-disease-(covid-19)/fake-news-alert
How is ‘fake news’ defined, and when will it be added to the dictionary?. https://www.merriam-webster.com/words-at-play/the-real-story-of-fake-news
Akiwowo, S., et al. (eds.): Proceedings of the Fourth Workshop on Online Abuse and Harms. Association for Computational Linguistics (2020)
Arampatzis, A., et al. (eds.): 11th International Conference of the CLEF Association (CLEF 2020). LNCS (2020)
Aroyehun, S.T., Gelbukh, A.: Aggression detection in social media: using deep neural networks, data augmentation, and pseudo labeling. In: Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018) (2018)
Azhan, M., Ahmad, M.: LaDiff ULMFiT: a layer differentiated training approach for ULMFiT. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 54–61, Springer, Cham (2021)
Bang, Y., et al.: Model generalization on COVID-19 fake news detection. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 128–140, Springer, Cham (2021)
Baris, I., Boukhers, Z.: ECOL: early detection of COVID lies using content, prior knowledge and source information. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 141–152, Springer, Cham (2021)
Beran, T., Li, Q.: Cyber-harassment: a study of a new method for an old behavior. JECR 32(3), 265 (2005)
Bhardwaj, M., et al.: Hostility detection dataset in Hindi (2020)
Bhatnagar, V., et al.: Divide and conquer: an ensemble approach for hostile post detection in Hindi. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 244–255, Springer, Cham (2021)
Chakravarthi, B.R., et al.: Findings of the shared task on offensive language identification in Tamil, Malayalam, and Kannada. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages (2021)
Chen, B., et al.: Transformer-based language model fine-tuning methods for COVID-19 fake news detection. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 83–92, Springer, Cham (2021)
Cheng, Y., Chen, Z.F.: The influence of presumed fake news influence: examining public support for corporate corrective response, media literacy interventions, and governmental regulation. Mass Commun. Soc. 23(5), 705–729 (2020)
Claire Wardle, H.D.: Information disorder: toward an interdisciplinary framework for research and policy making (2017). https://tverezo.info/wp-content/uploads/2017/11/PREMS-162317-GBR-2018-Report-desinformation-A4-BAT.pdf
Cui, L., Lee, D.: CoAID: COVID-19 healthcare misinformation dataset (2020)
Das, S.D., Basak, A., Dutta, S.: A heuristic-driven ensemble framework for COVID-19 fake news detection. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 164–176, Springer, Cham (2021)
Davidson, T., et al.: Automated hate speech detection and the problem of offensive language. In: Proceedings of ICWSM (2017)
De, A., et al.: Coarse and fine-grained hostility detection in Hindi posts using fine tuned multilingual embeddings. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 201–212, Springer, Cham (2021)
Devlin, J., et al.: BERT: pre-training of deep bidirectional transformers for language understanding (2019)
Dolhansky, B., et al.: The deepfake detection challenge (DFDC) dataset (2020)
Felber, T.: Constraint 2021: machine learning models for COVID-19 fake news detection shared task (2021)
Fišer, D., et al. (eds.): Proceedings of the 2nd Workshop on Abusive Language Online (ALW2) (2018)
Glazkova, A., Glazkov, M., Trifonov, T.: g2tmn at constraint@AAAI2021: exploiting CT-BERT and ensembling learning for COVID-19 fake news detection. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 116–127, Springer, Cham (2021)
Gundapu, S., Mamidi, R.: Transformer based automatic COVID-19 fake news detection system (2021)
Gupta, A., et al.: Hostility detection and COVID-19 fake news detection in social media (2021)
Gururangan, S., et al.: Don’t stop pretraining: adapt language models to domains and tasks (2020)
Holone, H.: The filter bubble and its effect on online personal health information. Croatian Med. J. 57, 298 (2016)
Howard, J., Ruder, S.: Universal language model fine-tuning for text classification (2018)
Humprecht, E., Hellmueller, L., Lischka, J.A.: Hostile emotions in news comments: a cross-national analysis of Facebook discussions. Soc. Media+ Soc. 6(1), 2056305120912481 (2020)
Jha, V.K., et al.: DHOT-repository and classification of offensive tweets in the Hindi language. Procedia Comput. Sci. 171, 2324–2333 (2020)
Joshi, R., Karnavat, R., Jirapure, K., Joshi, R.: Evaluation of deep learning models for hostility detection in Hindi text (2021)
Kakwani, D., et al.: IndicNLPSuite: monolingual corpora. In: Findings of EMNLP, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages (2020)
Kamal, O., Kumar, A., Vaidhya, T.: Hostility detection in Hindi leveraging pre-trained language models. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 213–223, Springer, Cham (2021)
Kar, D., Bhardwaj, M., Samanta, S., Azad, A.P.: No rumours please! A multi-indic-lingual approach for COVID fake-tweet detection. arXiv:2010.06906 (2020)
Keelery, S.: Social media users in India, October 2020. https://www.statista.com/statistics/278407/number-of-social-network-users-in-india/
Koloski, B., Stepišnik-Perdih, T., Škrlj, B.: Identification of COVID-19 related fake news via neural stacking. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 177–188, Springer, Cham (2021)
Kumar, R., et al.: Benchmarking aggression identification in social media. In: Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018) (2018)
Kumar, R., et al.: Evaluating aggression identification in social media. In: Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (2020)
Leite, J.A., et al.: Toxic language detection in social media for Brazilian Portuguese: new dataset and multilingual analysis (2020)
Li, X., et al.: Exploring text-transformers in AAAI 2021 shared task: COVID-19 fake news detection in English. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 106–115, Springer, Cham (2021)
Liu, R., Zhou, X.: Extracting latent information from datasets in the constraint-2020 shared task on the hostile post detection. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 62–73, Springer, Cham (2021)
Liu, Y., et al.: RoBERTa: arobustly optimized BERT pretraining approach (2019)
Martens, D., Maalej, W.: Towards understanding and detecting fake reviews in app stores. Empirical Softw. Eng. 24(6), 3316–3355 (2019)
Mathew, B., et al.: HateXplain: a benchmark dataset for explainable hate speech detection (2020)
Mollas, I., et al.: Ethos: an online hate speech detection dataset (2020)
Müller, M., Salathé, M., Kummervold, P.E.: COVID-Twitter-BERT: a natural language processing model to analyse COVID-19 content on Twitter (2020)
Nakamura, K., Levy, S., Wang, W.Y.: r/Fakeddit: a new multimodal benchmark dataset for fine-grained fake news detection (2020)
Nikhil, N., et al.: LSTMs with attention for aggression detection. In: Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (2018)
Patwa, P., et al.: Fighting an infodemic: COVID-19 fake news dataset. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 21–29, Springer, Cham (2021)
Raha, T., et al.: Identifying COVID-19 fake news in social media (2021)
Raha, T., et al.: Task adaptive pretraining of transformers for hostility detection. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 236–243, Springer, Cham (2021)
Risch, J., Krestel, R.: Bagging BERT models for robust aggression identification. In: Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (2020)
Roberts, S.T., et al. (eds.): Proceedings of the Third Workshop on Abusive Language Online. Association for Computational Linguistics (2019)
Rose, J.: To believe or not to believe: an epistemic exploration of fake news, truth, and the limits of knowing. Postdigital Sci. Educ. 2, 202–216 (2020)
Rowe, I.: Deliberation 2.0: comparing the deliberative quality of online news user comments across platforms. J. Broadcast. Electron. Media 59(4), 539–555 (2015)
Safi Samghabadi, N., Patwa, P., PYKL, S., Mukherjee, P., Das, A., Solorio, T.: Aggression and misogyny detection using BERT: a multi-task approach. In: Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (2020)
Saha, P., Mathew, B., Goyal, P., Mukherjee, A.: Hateminers: detecting hate speech against women (2018)
Sai, S., et al.: Stacked embeddings and multiple fine-tuned XLM-roBERTa models for enhanced hostility identification. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 224–235, Springer, Cham (2021)
Sarthak, Shukla, S., Mittal, G., Arya, K.V.: Detecting hostile posts using relational graph convolutional network (2021)
Sharif, O., Hossain, E., Hoque, M.M.: Combating hostility: COVID-19 fake news and hostile post detection in social media (2021)
Shekhar, C., et al.: Walk in wild: an ensemble approach for hostility detection in Hindi posts (2021)
Shifath, S.M.S.U.R., Khan, M.F., Islam, M.S.: A transformer based approach for fighting COVID-19 fake news (2021)
Shu, K., et al.: Fakenewsnet: a data repository with news content, social context and spatialtemporal information for studying fake news on social media (2019)
Shushkevich, E., Cardiff, J.: TUDublin team at constraint@AAAI2021 - COVID19 fake news detection (2021)
Gautam, A., Masud, S.: Fake news detection system using XLNet model with topic distributions: constraint@AAAI2021 shared task. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 189–200, Springer, Cham (2021)
Vallone, R., Ross, L., Lepper, M.: The hostile media phenomenon: biased perception and perceptions of media bias in coverage of the Beirut massacre. J. Pers. Soc. Psychol. 49(3), 577–85 (1985)
Vijjali, R., Potluri, P., Kumar, S., Teki, S.: Two stage transformer model for COVID-19 fake news detection and fact checking (2020)
Wani, A., et al.: Evaluating deep learning approaches for COVID19 fake news detection. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 153–163, Springer, Cham (2021)
Waseem, Z., Chung, W.H.K., Hovy, D., Tetreault, J. (eds.): Proceedings of the First Workshop on Abusive Language Online. Association for Computational Linguistics (2017)
Wendling, M.: The (almost) complete history of ‘fake news’, January 2018. https://www.bbc.com/news/blogs-trending-42724320
Zhou, S., Fu, R., Li., J.: Fake news and hostile post detection using an ensemble learning model. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 74–82, Springer, Cham (2021)
Zutshi, A., Raj, A.: Tackling the infodemic : analysis using transformer based model. In: Chakraborty, T., Shu, K., Bernard, R., Liu, H., Akhtar, M.S. (eds.) CONSTRAINT 2021, CCIS 1402, pp. 93–105, Springer, Cham (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Patwa, P. et al. (2021). Overview of CONSTRAINT 2021 Shared Tasks: Detecting English COVID-19 Fake News and Hindi Hostile Posts. In: Chakraborty, T., Shu, K., Bernard, H.R., Liu, H., Akhtar, M.S. (eds) Combating Online Hostile Posts in Regional Languages during Emergency Situation. CONSTRAINT 2021. Communications in Computer and Information Science, vol 1402. Springer, Cham. https://doi.org/10.1007/978-3-030-73696-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-73696-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73695-8
Online ISBN: 978-3-030-73696-5
eBook Packages: Computer ScienceComputer Science (R0)