[go: up one dir, main page]

Skip to main content

A Traffic Feature Analysis Approach for Converged Networks of LTE and Broadband Carrier Wireless Communications

  • Conference paper
  • First Online:
Simulation Tools and Techniques (SIMUtools 2020)

Abstract

With the emergence of new requirements for the application of network access network, network traffic presents new characteristics, and network management faces new challenges. The main contribution of this paper is to propose a new network traffic model and prediction method based on generalized linear regression model. Firstly, the network traffic is modeled and generalized linear regression model is used to model it. Then, using the generalized linear regression theory, we can calculate the modified parameters and determine the appropriate model, so that we can accurately predict the network traffic. The simulation results show that the method is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, Y., Liu, F., Pang, H., et al.: Research on smart grid power line broadband communication system. IOP Conf. Ser. Mater. Sci. Eng. 466(1), 012075 (2018)

    Google Scholar 

  2. Sharma, K., Saini, L.M.: Power-line communications for smart grid: progress, challenges, opportunities and status. Renew. Sustain. Energ. Rev. 67, 704–751 (2017)

    Article  Google Scholar 

  3. Jiang, D., Wang, Y., Lv, Z., Qi, S., Singh, S.: Big data analysis based network behavior insight of cellular networks for industry 4.0 applications. IEEE Trans. Ind. Inform. 16(2), 1310–1320 (2020)

    Article  Google Scholar 

  4. Wang, D.: Bandwidth prediction for business requirement of electric power communication network with deep-learning. In: 2018 3rd International Workshop on Materials Engineering and Computer Sciences (IWMECS 2018). Atlantis Press (2018)

    Google Scholar 

  5. Casas, P., D’Alconzo, A., Wamser, F., et al.: Predicting QoE in cellular networks using machine learning and in-smartphone measurements. In: 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6. IEEE (2017)

    Google Scholar 

  6. Wu, F., Jiang, X., Ma, W., et al.: A feature extraction method of network traffic for time-frequency synchronization applications. In: 2017 International Conference on Computer Systems, Electronics and Control (ICCSEC), pp. 537–539. IEEE (2017)

    Google Scholar 

  7. Jiang, D., Huo, L., Lv, Z., Song, H., Qin, W.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intel. Transp. Syst. 19(10), 3305–3319 (2018)

    Article  Google Scholar 

  8. Meidan, Y., Bohadana, M., Shabtai, A., et al.: ProfilIoT: a machine learning approach for IoT device identification based on network traffic analysis. In: Proceedings of the Symposium on Applied Computing, pp. 506–509. ACM (2017)

    Google Scholar 

  9. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., et al.: Network traffic classifier with convolutional and recurrent neural networks for Internet of Things. IEEE Access 5, 18042–18050 (2017)

    Article  Google Scholar 

  10. Jiang, D., Huo, L., Li, Y.: Fine-granularity inference and estimations to network traffic for SDN. PloS One 13(5), 1–23 (2018)

    Google Scholar 

  11. Polson, N.G., Sokolov, V.O.: Deep learning for short-term traffic flow prediction. Transp. Res. Part C: Emerg. Technol. 79, 1–17 (2017)

    Article  Google Scholar 

  12. Saeed, A.T., Esmailpour, A.: Quality of service class mapping and scheduling scheme for converged LTE-WiFi in the next generation networks. Int. J. Commun. Netw. Distrib. Syst. 23(3), 352–379 (2019)

    Google Scholar 

  13. Jiang, D., Wang, W., Shi, L., Song, H.: A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans. Netw. Sci. Eng. 7(1), 507–519 (2020)

    Article  MathSciNet  Google Scholar 

  14. Vaton, S., Bedo, J.: Network traffic matrix: how can one learn the prior distributions from the link counts only. In: Proceedings of ICC 2004, pp. 2138–2142 (2004)

    Google Scholar 

  15. Lad, M., Oliveira, R., Massey, D., et al.: Inferring the origin of routing changes using link weights. In: Proceedings of ICNP, pp. 93–102 (2007)

    Google Scholar 

  16. Tune, P., Veitch, D.: Sampling vs sketching: an information theoretic comparison. In: Proceedings of INFOCOM, pp. 2105–2113 (2011)

    Google Scholar 

  17. Huo, L., Jiang, D., Lv, Z., et al.: An intelligent optimization-based traffic information acquirement approach to software-defined networking. Comput. Intell. 36, 151–171 (2020)

    Article  Google Scholar 

  18. Wang, F., Jiang, D., Qi, S., et al.: A dynamic resource scheduling scheme in edge computing satellite networks. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01421-5

  19. Chekired, D., Khoukhi, L., Mouftah, H.: Decentralized cloud-SDN architecture in smart grid: a dynamic pricing model. IEEE Trans. Ind. Inform. 14(3), 1220–1231 (2018)

    Article  Google Scholar 

  20. Jiang, D., Wang, Y., Lv, Z., Wang, W., Wang, H.: An energy-efficient networking approach in cloud services for IIoT networks. IEEE J. Sel. Areas Commun. 38(5), 928–941 (2020)

    Article  Google Scholar 

  21. Wang, Y., Jiang, D., Huo, L., Zhao, Y.: A new traffic prediction algorithm to software defined networking. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01423-3

  22. Chen, W., Liu, B., Huang, H., et al.: When UAV swarm meets edge-cloud computing: the QoS perspective. IEEE Netw. 33, 36–43 (2019)

    Google Scholar 

  23. Jiang, D., Li, W., Lv, H.: An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing 2017(220), 160–169 (2017)

    Article  Google Scholar 

  24. Liu, B., Jia, D., Wang, J., et al.: Cloud-assisted safety message dissemination in VANET–cellular heterogeneous wireless network. IEEE Syst. J. 11(1), 128–139 (2017)

    Article  Google Scholar 

  25. Zhou, Y., Zhu, X.: Analysis of vehicle network architecture and performance optimization based on soft definition of integration of cloud and fog. IEEE Access 7(2019), 101171–101177 (2019)

    Article  Google Scholar 

  26. El-sayed, H., Sankar, S., Prasad, M., et al.: Edge of things: the big picture on the integration of edge, IoT and the cloud in a distributed computing environment. IEEE Access 6, 1706–1717 (2018)

    Article  Google Scholar 

  27. Jiang, D., Huo, L., Song, H.: Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans. Netw. Sci. Eng. 7(1), 80–90 (2020)

    Article  MathSciNet  Google Scholar 

  28. Zhang, K., Mao, Y., Leng, S., et al.: Mobile-edge computing for vehicular networks. IEEE Veh. Technol. Mag. 12, 36–44 (2017)

    Article  Google Scholar 

  29. Pu, L., Chen, X., Mao, G., et al.: Chimera: an energy-efficient and deadline-aware hybrid edge computing framework for vehicular crowdsensing applications. IEEE Internet Things J. 6(1), 84–99 (2019)

    Article  Google Scholar 

  30. Eldjali, C., Lyes, K.: Optimal priority-queuing for EV charging-discharging service based on cloud computing. In: Proceedings of ICC 2017, pp. 1–6 (2017)

    Google Scholar 

  31. Jiang, D., Zhang, P., Lv, Z., et al.: Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet Things J. 3(6), 1437–1447 (2016)

    Article  Google Scholar 

  32. Xie, R., Tang, Q., Wang, Q., et al.: Collaborative vehicular edge computing networks: architecture design and research challenges. IEEE Access 7(2019), 178942–178952 (2019)

    Article  Google Scholar 

  33. Qi, S., Jiang, D., Huo, L.: A prediction approach to end-to-end traffic in space information networks. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01424-2

  34. Yang, Y., Niu, X., Li, L., et al.: A secure and efficient transmission method in connected vehicular cloud computing. IEEE Netw. 32, 14–19 (2018)

    Article  Google Scholar 

  35. Kaur, K., Garg, S., Kaddoum, G., et al.: Demand-response management using a fleet of electric vehicles: an opportunistic-SDN-based edge-cloud framework for smart grids. IEEE Netw. 33, 46–53 (2019)

    Article  Google Scholar 

  36. Guo, H., Zhang, J., Liu, J.: FiWi-enhanced vehicular edge computing networks. IEEE Veh. Technol. Mag. 14, 45–53 (2019)

    Article  Google Scholar 

  37. Liu, H., Zhang, Y., Yang, T.: Blockchain-enabled security in electric vehicles cloud and edge computing. IEEE Netw. 32, 78–83 (2018)

    Article  Google Scholar 

  38. Wang, J., He, B., Wang, J., et al.: Intelligent VNFs selection based on traffic identification in vehicular cloud networks. IEEE Trans. Veh. Technol. 68(5), 4140–4147 (2019)

    Article  Google Scholar 

  39. Li, M., Si, P., Zhang, Y.: Delay-tolerant data traffic to software-defined vehicular networks with mobile edge computing in smart city. IEEE Trans. Veh. Technol. 67(10), 9073–9086 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Liu, Y., Meng, F., Yang, Z., Wang, D., Nan, Y. (2021). A Traffic Feature Analysis Approach for Converged Networks of LTE and Broadband Carrier Wireless Communications. In: Song, H., Jiang, D. (eds) Simulation Tools and Techniques. SIMUtools 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 369. Springer, Cham. https://doi.org/10.1007/978-3-030-72792-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72792-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72791-8

  • Online ISBN: 978-3-030-72792-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics