Abstract
With the emergence of new requirements for the application of network access network, network traffic presents new characteristics, and network management faces new challenges. The main contribution of this paper is to propose a new network traffic model and prediction method based on generalized linear regression model. Firstly, the network traffic is modeled and generalized linear regression model is used to model it. Then, using the generalized linear regression theory, we can calculate the modified parameters and determine the appropriate model, so that we can accurately predict the network traffic. The simulation results show that the method is feasible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhang, Y., Liu, F., Pang, H., et al.: Research on smart grid power line broadband communication system. IOP Conf. Ser. Mater. Sci. Eng. 466(1), 012075 (2018)
Sharma, K., Saini, L.M.: Power-line communications for smart grid: progress, challenges, opportunities and status. Renew. Sustain. Energ. Rev. 67, 704–751 (2017)
Jiang, D., Wang, Y., Lv, Z., Qi, S., Singh, S.: Big data analysis based network behavior insight of cellular networks for industry 4.0 applications. IEEE Trans. Ind. Inform. 16(2), 1310–1320 (2020)
Wang, D.: Bandwidth prediction for business requirement of electric power communication network with deep-learning. In: 2018 3rd International Workshop on Materials Engineering and Computer Sciences (IWMECS 2018). Atlantis Press (2018)
Casas, P., D’Alconzo, A., Wamser, F., et al.: Predicting QoE in cellular networks using machine learning and in-smartphone measurements. In: 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6. IEEE (2017)
Wu, F., Jiang, X., Ma, W., et al.: A feature extraction method of network traffic for time-frequency synchronization applications. In: 2017 International Conference on Computer Systems, Electronics and Control (ICCSEC), pp. 537–539. IEEE (2017)
Jiang, D., Huo, L., Lv, Z., Song, H., Qin, W.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intel. Transp. Syst. 19(10), 3305–3319 (2018)
Meidan, Y., Bohadana, M., Shabtai, A., et al.: ProfilIoT: a machine learning approach for IoT device identification based on network traffic analysis. In: Proceedings of the Symposium on Applied Computing, pp. 506–509. ACM (2017)
Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., et al.: Network traffic classifier with convolutional and recurrent neural networks for Internet of Things. IEEE Access 5, 18042–18050 (2017)
Jiang, D., Huo, L., Li, Y.: Fine-granularity inference and estimations to network traffic for SDN. PloS One 13(5), 1–23 (2018)
Polson, N.G., Sokolov, V.O.: Deep learning for short-term traffic flow prediction. Transp. Res. Part C: Emerg. Technol. 79, 1–17 (2017)
Saeed, A.T., Esmailpour, A.: Quality of service class mapping and scheduling scheme for converged LTE-WiFi in the next generation networks. Int. J. Commun. Netw. Distrib. Syst. 23(3), 352–379 (2019)
Jiang, D., Wang, W., Shi, L., Song, H.: A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans. Netw. Sci. Eng. 7(1), 507–519 (2020)
Vaton, S., Bedo, J.: Network traffic matrix: how can one learn the prior distributions from the link counts only. In: Proceedings of ICC 2004, pp. 2138–2142 (2004)
Lad, M., Oliveira, R., Massey, D., et al.: Inferring the origin of routing changes using link weights. In: Proceedings of ICNP, pp. 93–102 (2007)
Tune, P., Veitch, D.: Sampling vs sketching: an information theoretic comparison. In: Proceedings of INFOCOM, pp. 2105–2113 (2011)
Huo, L., Jiang, D., Lv, Z., et al.: An intelligent optimization-based traffic information acquirement approach to software-defined networking. Comput. Intell. 36, 151–171 (2020)
Wang, F., Jiang, D., Qi, S., et al.: A dynamic resource scheduling scheme in edge computing satellite networks. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01421-5
Chekired, D., Khoukhi, L., Mouftah, H.: Decentralized cloud-SDN architecture in smart grid: a dynamic pricing model. IEEE Trans. Ind. Inform. 14(3), 1220–1231 (2018)
Jiang, D., Wang, Y., Lv, Z., Wang, W., Wang, H.: An energy-efficient networking approach in cloud services for IIoT networks. IEEE J. Sel. Areas Commun. 38(5), 928–941 (2020)
Wang, Y., Jiang, D., Huo, L., Zhao, Y.: A new traffic prediction algorithm to software defined networking. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01423-3
Chen, W., Liu, B., Huang, H., et al.: When UAV swarm meets edge-cloud computing: the QoS perspective. IEEE Netw. 33, 36–43 (2019)
Jiang, D., Li, W., Lv, H.: An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing 2017(220), 160–169 (2017)
Liu, B., Jia, D., Wang, J., et al.: Cloud-assisted safety message dissemination in VANET–cellular heterogeneous wireless network. IEEE Syst. J. 11(1), 128–139 (2017)
Zhou, Y., Zhu, X.: Analysis of vehicle network architecture and performance optimization based on soft definition of integration of cloud and fog. IEEE Access 7(2019), 101171–101177 (2019)
El-sayed, H., Sankar, S., Prasad, M., et al.: Edge of things: the big picture on the integration of edge, IoT and the cloud in a distributed computing environment. IEEE Access 6, 1706–1717 (2018)
Jiang, D., Huo, L., Song, H.: Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans. Netw. Sci. Eng. 7(1), 80–90 (2020)
Zhang, K., Mao, Y., Leng, S., et al.: Mobile-edge computing for vehicular networks. IEEE Veh. Technol. Mag. 12, 36–44 (2017)
Pu, L., Chen, X., Mao, G., et al.: Chimera: an energy-efficient and deadline-aware hybrid edge computing framework for vehicular crowdsensing applications. IEEE Internet Things J. 6(1), 84–99 (2019)
Eldjali, C., Lyes, K.: Optimal priority-queuing for EV charging-discharging service based on cloud computing. In: Proceedings of ICC 2017, pp. 1–6 (2017)
Jiang, D., Zhang, P., Lv, Z., et al.: Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet Things J. 3(6), 1437–1447 (2016)
Xie, R., Tang, Q., Wang, Q., et al.: Collaborative vehicular edge computing networks: architecture design and research challenges. IEEE Access 7(2019), 178942–178952 (2019)
Qi, S., Jiang, D., Huo, L.: A prediction approach to end-to-end traffic in space information networks. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01424-2
Yang, Y., Niu, X., Li, L., et al.: A secure and efficient transmission method in connected vehicular cloud computing. IEEE Netw. 32, 14–19 (2018)
Kaur, K., Garg, S., Kaddoum, G., et al.: Demand-response management using a fleet of electric vehicles: an opportunistic-SDN-based edge-cloud framework for smart grids. IEEE Netw. 33, 46–53 (2019)
Guo, H., Zhang, J., Liu, J.: FiWi-enhanced vehicular edge computing networks. IEEE Veh. Technol. Mag. 14, 45–53 (2019)
Liu, H., Zhang, Y., Yang, T.: Blockchain-enabled security in electric vehicles cloud and edge computing. IEEE Netw. 32, 78–83 (2018)
Wang, J., He, B., Wang, J., et al.: Intelligent VNFs selection based on traffic identification in vehicular cloud networks. IEEE Trans. Veh. Technol. 68(5), 4140–4147 (2019)
Li, M., Si, P., Zhang, Y.: Delay-tolerant data traffic to software-defined vehicular networks with mobile edge computing in smart city. IEEE Trans. Veh. Technol. 67(10), 9073–9086 (2018)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Li, H., Liu, Y., Meng, F., Yang, Z., Wang, D., Nan, Y. (2021). A Traffic Feature Analysis Approach for Converged Networks of LTE and Broadband Carrier Wireless Communications. In: Song, H., Jiang, D. (eds) Simulation Tools and Techniques. SIMUtools 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 369. Springer, Cham. https://doi.org/10.1007/978-3-030-72792-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-72792-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72791-8
Online ISBN: 978-3-030-72792-5
eBook Packages: Computer ScienceComputer Science (R0)