Abstract
Camera calibration is a prerequisite for many computer vision applications. While a good calibration can turn a camera into a measurement device, it can also deteriorate a system’s performance if not done correctly. In the recent past, there have been great efforts to simplify the calibration process. Yet, inspection and evaluation of calibration results typically still requires expert knowledge.
In this work, we introduce two novel methods to capture the fundamental error sources in camera calibration: systematic errors (biases) and remaining uncertainty (variance). Importantly, the proposed methods do not require capturing additional images and are independent of the camera model. We evaluate the methods on simulated and real data and demonstrate how a state-of-the-art system for guided calibration can be improved. In combination, the methods allow novice users to perform camera calibration and verify both the accuracy and precision.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Here, we assume the underlying distribution is Gaussian but might be subject to sporadic outliers. The MAD multiplied by a factor of 1.4826 gives a robust estimate for the standard deviation [14].
- 2.
To choose a threshold, it can be used that \(\frac{1}{1-\mathrm {BR}}\) is approximately F-distributed, representing the ratio of the residual sum of squares (SSE) of the calibration over the SSE of the virtual targets, weighted by their respective degrees of freedom. However, this only holds approximately, as the datapoints are not independent. We therefore use an empirical threshold of \(\tau _{BR}=0.2\), allowing for small biases.
- 3.
The decomposition of the target must lead to an overdetermined estimation problem.
References
Abraham, S., Förstner, W.: Calibration errors in structure from motion. In: Levi, P., Schanz, M., Ahlers, R.J., May, F. (eds.) Mustererkennung 1998, pp. 117–124. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-642-72282-0_11
Beck, J., Stiller, C.: Generalized B-spline camera model. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 2137–2142. IEEE (2018). https://ieeexplore.ieee.org/abstract/document/8500466/
Cheong, L.F., Peh, C.H.: Depth distortion under calibration uncertainty. Comput. Vis. Image Underst. 93(3), 221–244 (2004). https://doi.org/10.1016/j.cviu.2003.09.003. https://linkinghub.elsevier.com/retrieve/pii/S1077314203001437
Cheong, L.F., Xiang, X.: Behaviour of SFM algorithms with erroneous calibration. Comput. Vis. Image Underst. 115(1), 16–30 (2011). https://doi.org/10.1016/j.cviu.2010.08.004. https://linkinghub.elsevier.com/retrieve/pii/S1077314210001852
Cramariuc, A., Petrov, A., Suri, R., Mittal, M., Siegwart, R., Cadena, C.: Learning camera miscalibration detection. arXiv preprint arXiv:2005.11711 (2020)
Hartley, R., Zisserman, A.: Multiple view geometry in computer vision (2004). https://doi.org/10.1017/CBO9780511811685. oCLC: 171123855
Luhmann, T., Robson, S., Kyle, S., Boehm, J.: Close-range Photogrammetry and 3D Imaging. De Gruyter textbook, De Gruyter (2013). https://books.google.de/books?id=TAuBngEACAAJ
OpenCV: OpenCV Fisheye Camera Model. https://docs.opencv.org/master/db/d58/group__calib3d__fisheye.html
Ozog, P., Eustice, R.M.: On the importance of modeling camera calibration uncertainty in visual SLAM. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3777–3784. IEEE (2013). https://ieeexplore.ieee.org/abstract/document/6631108/
Peng, S., Sturm, P.: Calibration wizard: a guidance system for camera calibration based on modelling geometric and corner uncertainty. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1497–1505 (2019)
Rautenberg, U., Wiggenhagen, M.: Abnahme und ueberwachung photogrammetrischer messsysteme nach vdi 2634, blatt 1. PFG 2/2002, S.117-124 (2002). https://www.ipi.uni-hannover.de/fileadmin/ipi/publications/VDI2634_1e.pdf
Richardson, A., Strom, J., Olson, E.: AprilCal: assisted and repeatable camera calibration. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1814–1821. IEEE (2013). https://ieeexplore.ieee.org/abstract/document/6696595/
Rojtberg, P., Kuijper, A.: Efficient pose selection for interactive camera calibration. In: 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 31–36. IEEE (2018). https://ieeexplore.ieee.org/abstract/document/8613748/
Rousseeuw, P.J., Croux, C.: Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 88(424), 1273–1283 (1993)
Schoeps, T., Larsson, V., Pollefeys, M., Sattler, T.: Why Having 10,000 Parameters in Your Camera Model is Better Than Twelve. arXiv preprint arXiv:1912.02908 (2019). https://arxiv.org/abs/1912.02908
Strauss, T.: Kalibrierung von Multi-Kamera-Systemen. KIT Scientific Publishing (2015). https://d-nb.info/1082294497/34
Svoboda, T., Sturm, P.: What can be done with a badly calibrated Camera in Ego-Motion Estimation? (1996). https://hal.inria.fr/inria-00525701/
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000). https://ieeexplore.ieee.org/abstract/document/888718/
Zucchelli, M., Kosecka, J.: Motion bias and structure distortion induced by calibration errors, pp. 68.1–68.10. British Machine Vision Association (2001). https://doi.org/10.5244/C.15.68. http://www.bmva.org/bmvc/2001/papers/51/index.html
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hagemann, A., Knorr, M., Janssen, H., Stiller, C. (2021). Bias Detection and Prediction of Mapping Errors in Camera Calibration. In: Akata, Z., Geiger, A., Sattler, T. (eds) Pattern Recognition. DAGM GCPR 2020. Lecture Notes in Computer Science(), vol 12544. Springer, Cham. https://doi.org/10.1007/978-3-030-71278-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-71278-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-71277-8
Online ISBN: 978-3-030-71278-5
eBook Packages: Computer ScienceComputer Science (R0)