[go: up one dir, main page]

Skip to main content

Anomaly Detection on Roads Using C-ITS Messages

  • Conference paper
  • First Online:
Communication Technologies for Vehicles (Nets4Cars/Nets4Trains/Nets4Aircraft 2020)

Abstract

Cooperative Intelligent Transport Network is one of the most challenging issue in networking and computer science. In this area, huge amount of data are exchanged. Smart analysis of this collected data could be achieved for many purposes: traffic prediction, driver profile detection, anomaly detection, etc. Anomaly detection is an important issue for road operators. An anomaly on roads could be caused by various reasons: potholes, obstacles, weather conditions, etc. An early detection of such anomalies will reduce incident risks such as traffic jams, accidents. The aim of this paper is to collect message exchanges between vehicles and analyze trajectories. This analysis becomes difficult since a privacy principle is applied in the case of C-ITS. Indeed, each message sent is generated with an identifier of the sender. This identifier is kept only over a specified time interval thus one vehicle will have multiple identifiers. We first have to solve Trajectory-User Linking problem by chaining anonymous trajectories to potential vehicles by considering similarity in movement patterns. After that we apply various methods to check variations of trajectories from normal ones. When we observe some differences, we can raise an alarm about a potential anomaly. In order to check the validity of this work, we generated a large amount of messages exchanges by many vehicles using the Omnet simulator together with the Artery, Sumo plug-in. We applied various variations on some obtained trajectories. Finally, we ran our detection algorithm on the obtained trajectories using different parameters (angles, speed, acceleration) and obtained very interesting results in terms of detection rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shekhar, S., Xiong, H., Zhou, X. (eds.): Encyclopedia of GIS. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-17885-1

    Book  Google Scholar 

  2. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. 6(3), 1–41 (2015). https://doi.org/10.1145/2743025

    Article  Google Scholar 

  3. Valdés, F., Güting, R.H.: A framework for efficient multi-attribute movement data analysis. VLDB J. 28(4), 427–449 (2018). https://doi.org/10.1007/s00778-018-0525-6

    Article  Google Scholar 

  4. Alesiani, F., Moreira-Matias, L., Faizrahnemoon, M.: On learning from inaccurate and incomplete traffic flow data. IEEE Trans. Intell. Transport. Syst. 19(11), 3698–3708 (2018). https://doi.org/10.1109/TITS.2018.2857622

    Article  Google Scholar 

  5. Wu, T., Qin, J., Wan, Y.: TOST: a topological semantic model for GPS trajectories inside road networks. IJGI 8(9), 410 (2019). https://doi.org/10.3390/ijgi8090410

    Article  Google Scholar 

  6. Cao, Y., et al.: Effective spatio-temporal semantic trajectory generation for similar pattern group identification. Int. J. Mach. Learn. Cybern. 11(2), 287–300 (2019). https://doi.org/10.1007/s13042-019-00973-y

    Article  Google Scholar 

  7. Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., Aberer, K.: Semantic trajectories: mobility data computation and annotation. ACM Trans. Intell. Syst. Technol. 4(3), 1 (2013). https://doi.org/10.1145/2483669.2483682

    Article  Google Scholar 

  8. Nishad, A., Abraham, S.: SemTraClus: an algorithm for clustering and prioritizing semantic regions of spatio-temporal trajectories. Int. J. Comput. Appl. 1–10 (2019). https://doi.org/10.1080/1206212X.2019.1655853

  9. Gao, Q., Zhou, F., Zhang, K., Trajcevski, G., Luo, X., Zhang, F.: Identifying human mobility via trajectory embeddings. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, pp. 1689–1695 (August 2017). https://doi.org/10.24963/ijcai.2017/234

  10. Zhou, F., Gao, Q., Trajcevski, G., Zhang, K., Zhong, T., Zhang, F.: Trajectory-user linking via variational autoencoder. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, pp. 3212–3218 (July 2018). https://doi.org/10.24963/ijcai.2018/446

  11. Feng, J., et al.: DPLink: user identity linkage via deep neural network from heterogeneous mobility data. In: The World Wide Web Conference on - WWW 2019, San Francisco, CA, USA, pp. 459–469 (2019). https://doi.org/10.1145/3308558.3313424

  12. Vicenzi, F., Petry, L.M.: Exploring frequency-based approaches for efficient trajectory classification. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing - SAC 2020, March 30-April 3, pp. 624–631 (2020). https://doi.org/10.1145/3341105.3374045

  13. Yu, Q., Luo, Y., Chen, C., Chen, S.: Trajectory similarity clustering based on multi-feature distance measurement. Appl. Intell. 49(6), 2315–2338 (2019). https://doi.org/10.1007/s10489-018-1385-x

    Article  Google Scholar 

  14. Sabarish, B.A., Karthi, R., Gireeshkumar, T.: Clustering of trajectory data using hierarchical approaches. In: Hemanth, D.J., Smys, S. (eds.) Computational Vision and Bio Inspired Computing. LNCVB, vol. 28, pp. 215–226. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-71767-8_18

    Chapter  Google Scholar 

  15. Ferrero, C.A., Alvares, L.O., Zalewski, W., Bogorny, V.: MOVELETS: exploring relevant subtrajectories for robust trajectory classification. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing-SAC 2018, Pau, France, pp. 849–856 (2018). https://doi.org/10.1145/3167132.3167225

  16. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings 18th International Conference on Data Engineering, San Jose, CA, USA, pp. 673–684 (2002). https://doi.org/10.1109/ICDE.2002.994784

  17. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data - SIGMOD 2005, Baltimore, Maryland, p. 491 (2005). https://doi.org/10.1145/1066157.1066213

  18. Kang, H.-Y., Kim, J.-S., Li, K.-J.: Similarity measures for trajectory of moving objects in cellular space. In: Proceedings of the 2009 ACM symposium on Applied Computing - SAC 2009, Honolulu, Hawaii, p. 1325 (2009). https://doi.org/10.1145/1529282.1529580

  19. Ying, J.J.-C., Lu, E.H.-C., Lee, W.-C., Weng, T.-C., Tseng, V.S.: Mining user similarity from semantic trajectories. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks - LBSN 2010, San Jose, California, p. 19 (2010). https://doi.org/10.1145/1867699.1867703

  20. Furtado, A.S., Kopanaki, D., Alvares, L.O., Bogorny, V.: Multidimensional similarity measuring for semantic trajectories: multidimensional similarity Measuring for Semantic Trajectories. Trans. in GIS 20(2), 280–298 (2016). https://doi.org/10.1111/tgis.12156

    Article  Google Scholar 

  21. Lehmann, A.L., Alvares, L.O., Bogorny, V.: SMSM: a similarity measure for trajectory stops and moves. Int. J. Geogr. Inf. Sci. 33(9), 1847–1872 (2019). https://doi.org/10.1080/13658816.2019.1605074

    Article  Google Scholar 

  22. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  23. Wang, X., Fagette, A., Sartelet, P., Sun, L.: A probabilistic tensor factorization approach to detect anomalies in spatiotemporal traffic activities. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 1658–1663. IEEE (October 2019)

    Google Scholar 

  24. Wang, H., Bah, M.J., Hammad, M.: Progress in outlier detection techniques: a survey. IEEE Access 7, 107964–108000 (2019)

    Article  Google Scholar 

  25. Petit, J., Schaub, F., Feiri, M., Kargl, F.: Pseudonym schemes in vehicular networks: a survey. IEEE Commun. Surv. Tutorials 17(1), 228–255 (2015). https://doi.org/10.1109/COMST.2014.2345420

    Article  Google Scholar 

  26. ETSI E. 302 637–2 V1. 3.1-Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service. ETSI (September 2014)

    Google Scholar 

  27. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)

    Article  MathSciNet  Google Scholar 

  28. Golab, L., Özsu, M.T.: Issues in data stream management. ACM Sigmod Rec. 32(2), 5–14 (2003)

    Article  Google Scholar 

  29. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach. Learn. 90(3), 317–346 (2012). https://doi.org/10.1007/s10994-012-5320-9

    Article  MathSciNet  MATH  Google Scholar 

  30. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hacène Fouchal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moso, J.C. et al. (2020). Anomaly Detection on Roads Using C-ITS Messages. In: Krief, F., Aniss, H., Mendiboure, L., Chaumette, S., Berbineau, M. (eds) Communication Technologies for Vehicles. Nets4Cars/Nets4Trains/Nets4Aircraft 2020. Lecture Notes in Computer Science(), vol 12574. Springer, Cham. https://doi.org/10.1007/978-3-030-66030-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66030-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66029-1

  • Online ISBN: 978-3-030-66030-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics