[go: up one dir, main page]

Skip to main content

Cranial Defect Reconstruction Using Cascaded CNN with Alignment

  • Conference paper
  • First Online:
Towards the Automatization of Cranial Implant Design in Cranioplasty (AutoImplant 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12439))

Included in the following conference series:

Abstract

Designing a patient-specific cranial implant usually requires reconstructing the defective part of the skull using computer-aided design software, which is a tedious and time-demanding task. This lead to some recent advances in the field of automatic skull reconstruction with use of methods based on shape analysis or deep learning. The AutoImplant Challenge aims at providing a public platform for benchmarking skull reconstruction methods. The BUT submission to this challenge is based on skull alignment using landmark detection followed by a cascade of low-resolution and high-resolution reconstruction convolutional neural network. We demonstrate that the proposed method successfully reconstructs every skull in the standard test dataset and outperforms the baseline method in both overlap and distance metrics, achieving 0.920 DSC and 4.137 mm HD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/OldaKodym/BUT_autoimplant_public.

References

  1. Besl, P., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992). https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  2. Chen, X., Xu, L., Li, X., Egger, J.: Computer-aided implant design for the restoration of cranial defects. Sci. Rep. 7(1), 1–10 (2017). https://doi.org/10.1038/s41598-017-04454-6

    Article  Google Scholar 

  3. Drevický, D., Kodym, O.: Evaluating deep learning uncertainty measures in cephalometric landmark localization. In: Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies. SCITEPRESS - Science and Technology Publications (2020). https://doi.org/10.5220/0009375302130220

  4. Fuessinger, M.A., et al.: Planning of skull reconstruction based on a statistical shape model combined with geometric morphometrics. Int. J. Comput. Assist. Radiol. Surg. 13(4), 519–529 (2017). https://doi.org/10.1007/s11548-017-1674-6

    Article  Google Scholar 

  5. Fuessinger, M.A., et al.: Virtual reconstruction of bilateral midfacial defects by using statistical shape modeling. J. Cranio-Maxillofac. Surg. 47(7), 1054–1059 (2019). https://doi.org/10.1016/j.jcms.2019.03.027

    Article  Google Scholar 

  6. Kodym, O., Španěl, M., Herout, A.: Skull shape reconstruction using cascaded convolutional networks. Comput. Biol. Med. 123, 103886 (2020). https://doi.org/10.1016/j.compbiomed.2020.103886

    Article  Google Scholar 

  7. Kurland, D.B., et al.: Complications associated with decompressive craniectomy: a systematic review. Neurocrit. Care 23(2), 292–304 (2015). https://doi.org/10.1007/s12028-015-0144-7

    Article  Google Scholar 

  8. Lee, M.Y., Chang, C.C., Lin, C.C., Lo, L.J., Chen, Y.R.: Custom implant design for patients with cranial defects. IEEE Eng. Med. Biol. Mag. 21(2), 38–44 (2002). https://doi.org/10.1109/MEMB.2002.1000184

    Article  Google Scholar 

  9. Li, J., Pepe, A., Gsaxner, C., Campe, G., Egger, J.: A baseline approach for autoimplant: the MICCAI 2020 cranial implant design challenge. In: Syeda-Mahmood, T., et al. (eds.) CLIP/ML-CDS -2020. LNCS, vol. 12445, pp. 75–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60946-7_8

    Chapter  Google Scholar 

  10. Li, J., Pepe, A., Gsaxner, C., Egger, J.: An online platform for automatic skull defect restoration and cranial implant design (2020)

    Google Scholar 

  11. Matzkin, F., et al.: Self-supervised skull reconstruction in brain CT images with decompressive craniectomy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 390–399. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_38

    Chapter  Google Scholar 

  12. Morais, A., Egger, J., Alves, V.: Automated computer-aided design of cranial implants using a deep volumetric convolutional denoising autoencoder. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’19 2019. AISC, vol. 932, pp. 151–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16187-3_15

    Chapter  Google Scholar 

  13. Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230–238. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_27

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was partly supported by TESCAN Medical and TESCAN 3DIM companies. We gratefully acknowledge the support of the NVIDIA Corporation with the donation of the NVIDIA TITAN Xp GPU for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oldřich Kodym .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kodym, O., Španěl, M., Herout, A. (2020). Cranial Defect Reconstruction Using Cascaded CNN with Alignment. In: Li, J., Egger, J. (eds) Towards the Automatization of Cranial Implant Design in Cranioplasty. AutoImplant 2020. Lecture Notes in Computer Science(), vol 12439. Springer, Cham. https://doi.org/10.1007/978-3-030-64327-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64327-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64326-3

  • Online ISBN: 978-3-030-64327-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics