[go: up one dir, main page]

Skip to main content

Multi-modal Feature Attention for Cervical Lymph Node Segmentation in Ultrasound and Doppler Images

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1332))

Included in the following conference series:

  • 2612 Accesses

Abstract

Cervical lymph node disease is a kind of cervical disease with a high incidence. Accurate detection of lymph nodes can greatly improve the performance of the computer-aided diagnosis systems. Presently, most studies have focused on classifying lymph nodes in a given ultrasound image. However, ultrasound has a poor discrimination of different tissues such as blood vessel and lymph node. When solving confused tasks like detecting cervical lymph nodes, ultrasound imaging becomes inappropriate. In this study, we combined two common modalities to detect cervical lymph nodes: ultrasound and Doppler. Then a multimodal fusion method is proposed, which made full use of the complementary information between the two modalities to distinguish the lymph and other tissues. 1054 pairs of ultrasound and Doppler images are used in the experiment. As a result, the proposed multimodal fusion method is 3% higher (DICE value) than the baseline methods in segmentation results.

This work is supported by Beijing Municipal Natural Science Foundation (No. L192026).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Souce code for Auto Cropping SSD: https://github.com/RAY9874/Extract-us-region.

  2. 2.

    Source code for the proposed method U-net-dual-steam + FSM: https://github.com/RAY9874/Multimodal-Feature-Attention-for-Cervical-Lymph-Node-Segmentation-in-Ultrasound-and-Doppler-Images.

References

  1. Farhangfar, S., Rezaeian, M.: Semantic segmentation of aerial images using FCN-based network. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE), pp. 1864–1868. IEEE (2019)

    Google Scholar 

  2. Xiao, G., Brady, M., Noble, J.A., Zhang, Y.: Segmentation of ultrasound B-mode images with intensity inhomogeneity correction. IEEE Trans. Med. Imaging 21(1), 48–57 (2002)

    Article  Google Scholar 

  3. Gupta, D., Anand, R.: A hybrid edge-based segmentation approach for ultrasound medical images. Biomed. Sig. Process. Control 31, 116–126 (2017)

    Article  Google Scholar 

  4. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2017)

    Google Scholar 

  5. Ikedo, Y., et al.: Automated analysis of breast parenchymal patterns in whole breast ultrasound images: preliminary experience. Int. J. Comput. Assist. Radiol. Surg. 4(3), 299–306 (2009). https://doi.org/10.1007/s11548-009-0295-0

    Article  Google Scholar 

  6. Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25(8), 987–1010 (2006)

    Article  Google Scholar 

  7. Lei, B., et al.: Segmentation of breast anatomy for automated whole breast ultrasound images with boundary regularized convolutional encoder-decoder network. Neurocomputing 321, 178–186 (2018)

    Article  Google Scholar 

  8. Li, Q., et al.: Controlled study of traditional ultrasound and ultrasound elastography on the diagnosis of breast masses. Ultrasound Q. 31(4), 250 (2015)

    Article  MathSciNet  Google Scholar 

  9. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2014)

    Google Scholar 

  11. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3994–4003 (2016)

    Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Sultan, L.R., Cary, T.W., Sehgal, C.M.: Machine learning to improve breast cancer diagnosis by multimodal ultrasound. In: 2018 IEEE International Ultrasonics Symposium (IUS), pp. 1–4. IEEE (2018)

    Google Scholar 

  14. Thurman, S.T., Fienup, J.R., Guizar-Sicairos, M.: Efficient subpixel image registration algorithms (2008). ol/33/2/ol-33-2-156.pdf

    Google Scholar 

  15. Turgut, E., Celenk, C., Tanrivermis, S.A., Bekci, T., Gunbey, H.P., Aslan, K.: Efficiency of B-mode ultrasound and strain elastography in differentiating between benign and malignant cervical lymph nodes. Ultrasound Q. 33(3), 201 (2017)

    Article  Google Scholar 

  16. Wells, P.N.T., Halliwell, M.: Speckle in ultrasonic imaging. Ultrasonics 19(5), 225–229 (1981)

    Article  Google Scholar 

  17. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  18. Ying, M., Bhatia, K.S.S., Lee, Y., Yuen, H., Ahuja, A.: Review of ultrasonography of malignant neck nodes: greyscale, Doppler, contrast enhancement and elastography. Cancer Imaging 13(4), 658–669 (2013). Official Publication of the International Cancer Imaging Society

    Article  Google Scholar 

  19. Zhang, Y., Ying, M.T.C., Lin, Y., Ahuja, A.T., Chen, D.Z.: Coarse-to-fine stacked fully convolutional nets for lymph node segmentation in ultrasound images. In: IEEE International Conference on Bioinformatics & Biomedicine (2016)

    Google Scholar 

  20. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhili Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, X. et al. (2020). Multi-modal Feature Attention for Cervical Lymph Node Segmentation in Ultrasound and Doppler Images. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics