Abstract
Cervical lymph node disease is a kind of cervical disease with a high incidence. Accurate detection of lymph nodes can greatly improve the performance of the computer-aided diagnosis systems. Presently, most studies have focused on classifying lymph nodes in a given ultrasound image. However, ultrasound has a poor discrimination of different tissues such as blood vessel and lymph node. When solving confused tasks like detecting cervical lymph nodes, ultrasound imaging becomes inappropriate. In this study, we combined two common modalities to detect cervical lymph nodes: ultrasound and Doppler. Then a multimodal fusion method is proposed, which made full use of the complementary information between the two modalities to distinguish the lymph and other tissues. 1054 pairs of ultrasound and Doppler images are used in the experiment. As a result, the proposed multimodal fusion method is 3% higher (DICE value) than the baseline methods in segmentation results.
This work is supported by Beijing Municipal Natural Science Foundation (No. L192026).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Souce code for Auto Cropping SSD: https://github.com/RAY9874/Extract-us-region.
- 2.
Source code for the proposed method U-net-dual-steam + FSM: https://github.com/RAY9874/Multimodal-Feature-Attention-for-Cervical-Lymph-Node-Segmentation-in-Ultrasound-and-Doppler-Images.
References
Farhangfar, S., Rezaeian, M.: Semantic segmentation of aerial images using FCN-based network. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE), pp. 1864–1868. IEEE (2019)
Xiao, G., Brady, M., Noble, J.A., Zhang, Y.: Segmentation of ultrasound B-mode images with intensity inhomogeneity correction. IEEE Trans. Med. Imaging 21(1), 48–57 (2002)
Gupta, D., Anand, R.: A hybrid edge-based segmentation approach for ultrasound medical images. Biomed. Sig. Process. Control 31, 116–126 (2017)
He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2017)
Ikedo, Y., et al.: Automated analysis of breast parenchymal patterns in whole breast ultrasound images: preliminary experience. Int. J. Comput. Assist. Radiol. Surg. 4(3), 299–306 (2009). https://doi.org/10.1007/s11548-009-0295-0
Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25(8), 987–1010 (2006)
Lei, B., et al.: Segmentation of breast anatomy for automated whole breast ultrasound images with boundary regularized convolutional encoder-decoder network. Neurocomputing 321, 178–186 (2018)
Li, Q., et al.: Controlled study of traditional ultrasound and ultrasound elastography on the diagnosis of breast masses. Ultrasound Q. 31(4), 250 (2015)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2014)
Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3994–4003 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sultan, L.R., Cary, T.W., Sehgal, C.M.: Machine learning to improve breast cancer diagnosis by multimodal ultrasound. In: 2018 IEEE International Ultrasonics Symposium (IUS), pp. 1–4. IEEE (2018)
Thurman, S.T., Fienup, J.R., Guizar-Sicairos, M.: Efficient subpixel image registration algorithms (2008). ol/33/2/ol-33-2-156.pdf
Turgut, E., Celenk, C., Tanrivermis, S.A., Bekci, T., Gunbey, H.P., Aslan, K.: Efficiency of B-mode ultrasound and strain elastography in differentiating between benign and malignant cervical lymph nodes. Ultrasound Q. 33(3), 201 (2017)
Wells, P.N.T., Halliwell, M.: Speckle in ultrasonic imaging. Ultrasonics 19(5), 225–229 (1981)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Ying, M., Bhatia, K.S.S., Lee, Y., Yuen, H., Ahuja, A.: Review of ultrasonography of malignant neck nodes: greyscale, Doppler, contrast enhancement and elastography. Cancer Imaging 13(4), 658–669 (2013). Official Publication of the International Cancer Imaging Society
Zhang, Y., Ying, M.T.C., Lin, Y., Ahuja, A.T., Chen, D.Z.: Coarse-to-fine stacked fully convolutional nets for lymph node segmentation in ultrasound images. In: IEEE International Conference on Bioinformatics & Biomedicine (2016)
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Fu, X. et al. (2020). Multi-modal Feature Attention for Cervical Lymph Node Segmentation in Ultrasound and Doppler Images. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_55
Download citation
DOI: https://doi.org/10.1007/978-3-030-63820-7_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63819-1
Online ISBN: 978-3-030-63820-7
eBook Packages: Computer ScienceComputer Science (R0)