[go: up one dir, main page]

Skip to main content

Meta-STDP Rule Stabilizes Synaptic Weights Under in Vivo-like Ongoing Spontaneous Activity in a Computational Model of CA1 Pyramidal Cell

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12397))

Included in the following conference series:

  • 2292 Accesses

Abstract

It is widely accepted that in the brain processes related to learning and memory there are changes at the level of synapses. Synapses have the ability to change their strength depending on the stimuli, which is called activity-dependent synaptic plasticity. To date, many mathematical models describing activity-dependent synaptic plasticity have been introduced. However, the remaining question is whether these rules apply in general to the whole brain or only to individual areas or even just to individual types of cells. Here, we decided to test whether the well-known rule of Spike-Timing Dependent Plasticity (STDP) extended by metaplasticity (meta-STDP) supports long-term stability of major synaptic inputs to hippocampal CA1 pyramidal neurons. For this reason, we have coupled synaptic models equipped with a previously established meta-STDP rule to a biophysically realistic computational model of the hippocampal CA1 pyramidal cell with a simplified dendritic tree. Our simulations show that the meta-STDP rule is able to keep synaptic weights stable during ongoing spontaneous input activity as it happens in the hippocampus in vivo. This is functionally advantageous as neurons should not change their weights during the ongoing activity of neural circuits in vivo. However, they should maintain their ability to display plastic changes in the case of significantly different or “meaningful” inputs. Thus, our study is the first step before we attempt to simulate different stimulation protocols which induce changes in synaptic weights in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, I., Jerman, T., Kesner, R.: Disruption of delayed memory for a sequence of spatial locations following CA1- or CA3-lesions of the dorsal hippocampus. Neurobiol. Learn. Mem. 84, 138–147 (2005). https://doi.org/10.1016/j.nlm.2005.06.002

    Article  Google Scholar 

  2. Lee, I., Kesner, R.P.: Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat. Neurosci. 5, 162–168 (2002). https://doi.org/10.1038/nn790

    Article  Google Scholar 

  3. Lee, I., Kesner, R.P.: Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus. 14, 301–310 (2004). https://doi.org/10.1002/hipo.10177

    Article  Google Scholar 

  4. Hoang, L.T., Kesner, R.P.: Dorsal hippocampus, CA3, and CA1 lesions disrupt temporal sequence completion. Behav. Neurosci. 122, 9–15 (2008). https://doi.org/10.1037/0735-7044.122.1.9

    Article  Google Scholar 

  5. Hughes, J.R.: Post-tetanic potentiation. Physiol. Rev. 38, 91–113 (1958). https://doi.org/10.1152/physrev.1958.38.1.91

    Article  Google Scholar 

  6. Martin, S.J., Grimwood, P.D., Morris, R.G.M.: Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000). https://doi.org/10.1146/annurev.neuro.23.1.649

    Article  Google Scholar 

  7. Mayr, C.G., Partzsch, J.: Rate and pulse based plasticity governed by local synaptic state variables. Front. Synaptic Neurosci. 2, 33 (2010). https://doi.org/10.3389/fnsyn.2010.00033

    Article  Google Scholar 

  8. Benuskova, L., Abraham, W.C.: STDP rule endowed with the BCM sliding threshold accounts for hippocampal heterosynaptic plasticity. J. Comput. Neurosci. 22, 129–133 (2007). https://doi.org/10.1007/s10827-006-0002-x

    Article  MathSciNet  Google Scholar 

  9. Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213 (1997). https://doi.org/10.1126/science.275.5297.213

    Article  Google Scholar 

  10. Abraham, W.C.: Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 9, 387 (2008). https://doi.org/10.1038/nrn2356

    Article  Google Scholar 

  11. Jedlicka, P., Benuskova, L., Abraham, W.C.: A voltage-based STDP rule combined with fast BCM-Like metaplasticity accounts for LTP and concurrent “heterosynaptic” LTD in the dentate gyrus in vivo. PLoS Comput. Biol. 11, e1004588–e1004588 (2015). https://doi.org/10.1371/journal.pcbi.1004588

    Article  Google Scholar 

  12. Abraham, W.C., Logan, B., Wolff, A., Benuskova, L.: “Heterosynaptic” LTD in the dentate gyrus of anesthetized rat requires homosynaptic activity. J. Neurophysiol. 98, 1048–1051 (2007). https://doi.org/10.1152/jn.00250.2007

    Article  Google Scholar 

  13. Frank, L.M., Brown, E.N., Wilson, M.A.: A comparison of the firing properties of putative excitatory and inhibitory neurons from CA1 and the entorhinal cortex. J. Neurophysiol. 86, 2029–2040 (2001). https://doi.org/10.1152/jn.2001.86.4.2029

    Article  Google Scholar 

  14. Deshmukh, S.S., Yoganarasimha, D., Voicu, H., Knierim, J.J.: Theta modulation in the medial and the lateral entorhinal cortices. J. Neurophysiol. 104, 994–1006 (2010). https://doi.org/10.1152/jn.01141.2009

    Article  Google Scholar 

  15. Cutsuridis, V., Cobb, S., Graham, B.P.: Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus 20, 423–446 (2010). https://doi.org/10.1002/hipo.20661

    Article  Google Scholar 

  16. Tomko, M., Jedlička, P., Beňušková, Ľ.: Computational model of CA1 pyramidal cell with meta-STDP stabilizes under ongoing spontaneous activity as in vivo. In: Kognícia a umelý život 2019. Vydavateľstvo Univerzity Komenského, Bratislava (2019)

    Google Scholar 

  17. Megı́as, M., Emri, Z., Freund, T.F., Gulyás, A.I.: Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001). https://doi.org/10.1016/S0306-4522(00)00496-6

  18. Migliore, R., et al.: The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow. PLoS Comput. Biol. 14, e1006423–e1006423 (2018). https://doi.org/10.1371/journal.pcbi.1006423

    Article  Google Scholar 

  19. Hines, M.L., Carnevale, N.T.: The NEURON Simulation Environment. Neural Comput. 9, 1179–1209 (1997). https://doi.org/10.1162/neco.1997.9.6.1179

    Article  Google Scholar 

  20. Buzsáki, G.: Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002). https://doi.org/10.1016/S0896-6273(02)00586-X

    Article  Google Scholar 

  21. Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. Off. J. Soc. Neurosci. 2, 32–48 (1982). https://doi.org/10.1523/JNEUROSCI.02-01-00032.1982

    Article  Google Scholar 

  22. Izhikevich, E.M., Desai, N.S.: Relating STDP to BCM. Neural Comput. 15, 1511–1523 (2003). https://doi.org/10.1162/089976603321891783

    Article  MATH  Google Scholar 

  23. Mizuseki, K., Buzsáki, G.: Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex. Cell Rep. 4, 1010–1021 (2013). https://doi.org/10.1016/j.celrep.2013.07.039

  24. Buzsáki, G., Mizuseki, K.: The log-dynamic brain: how skewed distributions affect network operations. Nat. Rev. Neurosci. 15, 264–278 (2014). https://doi.org/10.1038/nrn3687

    Article  Google Scholar 

  25. Benusková, L., Diamond, M.E., Ebner, F.F.: Dynamic synaptic modification threshold: computational model of experience-dependent plasticity in adult rat barrel cortex. Proc. Natl. Acad. Sci. U. S. A. 91, 4791–4795 (1994). https://doi.org/10.1073/pnas.91.11.4791

    Article  Google Scholar 

  26. Sáray, S., et al.: Systematic comparison and automated validation of detailed models of hippocampal neurons. bioRxiv. 2020.07.02.184333 (2020). https://doi.org/10.1101/2020.07.02.184333

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matúš Tomko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tomko, M., Jedlička, P., Beňušková, L. (2020). Meta-STDP Rule Stabilizes Synaptic Weights Under in Vivo-like Ongoing Spontaneous Activity in a Computational Model of CA1 Pyramidal Cell. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12397. Springer, Cham. https://doi.org/10.1007/978-3-030-61616-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61616-8_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61615-1

  • Online ISBN: 978-3-030-61616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics