Abstract
This work proposes cycle based clustering technique using reversible cellular automata (CAs) where ‘closeness’ among objects is represented as objects belonging to the same cycle, that is reachable from each other. The properties of such CAs are exploited for grouping the objects with minimum intra-cluster distance while ensuring that limited number of cycles exist in the configuration-space. The proposed algorithm follows an iterative strategy where the clusters with closely reachable objects of previous level are merged in the present level using an unique auxiliary CA. Finally, it is observed that, our algorithm is at least at par with the best algorithm existing today.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adak, S., Mukherjee, S., Das, S.: Do there exist non-linear maximal length cellular automata? A study. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds.) ACRI 2018. LNCS, vol. 11115, pp. 289–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99813-8_26
Brock, G., Pihur, V., Datta, S., Datta, S.: clValid: an R package for cluster validation. J. Stat. Softw. 25(4), 1–22 (2008)
Carvalho, F., Lechevallier, Y., Melo, F.: Partitioning hard clustering algorithms based on multiple dissimilarity matrices. Pattern Recogn. 45(1), 447–464 (2012)
Das, S.: Theory and applications of nonlinear cellular automata in VLSI design. PhD thesis, Bengal Engineering and Science University, Shibpur, India (2006)
Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Machine Learning Proceedings 1995, pp. 194–202. Elsevier (1995)
Dunn, J.C.: Well separated clusters and fuzzy partitions. J. Cybern. 4, 95–104 (1974)
Dunn, J.C.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)
Estivill-Castro, V.: Why so many clustering algorithms - a position paper. ACM SIGKDD Explor. Newslett. 4, 65–75 (2002)
Handl, J., Knowles, J., Kell, D.B.: Computational cluster validation in post-genomic data analysis. Bioinformatics 21(15), 3201–3212 (2005)
Jain, A.K., Murthy, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 165–193 (1999)
Wolfram, S.: Theory and applications of cellular automata. World Scientific, Singapore (1986). ISBN 9971-50-124-4 pbk
Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci. 2(2), 165–193 (2015). https://doi.org/10.1007/s40745-015-0040-1
Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Net. 16(3), 645–678 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 IFIP International Federation for Information Processing
About this paper
Cite this paper
Mukherjee, S., Bhattacharjee, K., Das, S. (2020). Cycle Based Clustering Using Reversible Cellular Automata. In: Zenil, H. (eds) Cellular Automata and Discrete Complex Systems. AUTOMATA 2020. Lecture Notes in Computer Science(), vol 12286. Springer, Cham. https://doi.org/10.1007/978-3-030-61588-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-61588-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61587-1
Online ISBN: 978-3-030-61588-8
eBook Packages: Computer ScienceComputer Science (R0)