Abstract
In this paper, the fuzzy control of exploration and exploitation trade-off with on-line convergence rate estimation in evolutionary algorithms is presented. We introduce to the proposed algorithm three fuzzy systems (Mamdani type-1). These fuzzy systems are responsible for controlling the parameters of an evolutionary algorithm, such as selection pressure, crossover probability and mutation probability. While creating the fuzzy rules in the proposed fuzzy systems, we assumed that, at the start, the algorithm should possess maximal exploration property (low selection pressure, high mutation probability, and high crossover probability), while at the end, the algorithm should possesses maximal exploitation property (high selection pressure, low mutation probability, and low crossover probability). Also, in the paper we propose a method for estimating the algorithm convergence rate value. The proposed approach is verified using test functions chosen from literature. The results obtained using the proposed method are compared with the results obtained using evolutionary algorithms with a different selection operator, and standard values for crossover and mutation probability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liu, S., Mernik, M., Bryant, B.R.: Entropy-driven parameter control for evolutionary algorithms. Informatica 31, 41–57 (2007)
Hussain, A., Muhammad, Y.S.: Trade-off between exploration and exploitation with genetic algorithm using a novel selection operator. Complex Intell. Syst. 6(1), 1–14 (2019). https://doi.org/10.1007/s40747-019-0102-7
Xie, H., Zhang, M., Andreae, P.: An analysis of constructive crossover and selection pressure in genetic algorithm. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 1739–1746 (2007)
Back, T.: Selective pressure in evolutionary algorithms: a characterization of selection mechanisms. In: Proceedings of 1st IEEE Conference on Evolutionary Computing, pp. 57–62 (1994)
Słowik, A.: Steering of balance between exploration and exploitation properties of evolutionary algorithms - mix selection. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6114, pp. 213–220. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13232-2_26
Slowik, A.: Fuzzy control of trade-off between exploration and exploitation properties of evolutionary algorithms. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011. LNCS (LNAI), vol. 6678, pp. 59–66. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21219-2_9
Suganthan, P.N., et al.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical report, Nanyang Technological University, Singapore, Report number 2005005, May 2005
Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Technical report 201311, Computational intelligence laboratory, Zhengzhou University, Zhengzhou, China and Technical report, Nanyang Technological University, Singapore, December 2013
Słowik, A., Białko, M.: Modified version of roulette selection for evolution algorithms – the fan selection. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 474–479. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6_70
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1996). https://doi.org/10.1007/978-3-662-03315-9
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company Inc., New York (1989)
Smullen, D., Gillett, J., Heron, J., Rahnamayan, S.: Genetic algorithm with self-adaptive mutation controlled by chromosome similarity. In: IEEE Congress on Evolutionary Computation (CEC), Beijing, pp. 504–511 (2014)
Xu, J., Pei, L., Zhu, R.: Application of a genetic algorithm with random crossover and dynamic mutation on the travelling salesman problem. In: 8th International Congress of Information and Communication Technology, ICICT 2018, Procedia Computer Science, vol. 131, pp. 937–945 (2018)
Lin, W., Lee, W., Hong, T.: Adapting crossover and mutation rates in genetic algorithms. J. Inf. Sci. Eng. 19(5), 889–903 (2003)
Varnamkhasti, M.J., Lee, L.S., Bakar, M.R., Leong, W.J.: A genetic algorithm with fuzzy crossover operator and probability. Adv. Oper. Res. 2012 (2012). Article ID 956498, 16 pages
Khmeleva, E., Hopgood, A.A., Tipi, L., Shahidan, M.: Fuzzy-logic controlled genetic algorithm for the rail-freight crew-scheduling problem. KI - Künstliche Intelligenz 32(1), 61–75 (2017). https://doi.org/10.1007/s13218-017-0516-6
Lapa, K., Cpalka, K.: Flexible fuzzy PID controller (FFPIDC) and a nature-inspired method for its construction. IEEE Trans. Industr. Inf. 14(3), 1078–1088 (2018)
Cpałka, K.: Design of Interpretable Fuzzy Systems. SCI, vol. 684. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52881-6
Acknowledgment
This work was supported by Polish National Science Center (NCN) under a research grant 2018/02/X/ST6/02475.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Slowik, A. (2020). Fuzzy Control of Exploration and Exploitation Trade-Off with On-Line Convergence Rate Estimation in Evolutionary Algorithms. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2020. Lecture Notes in Computer Science(), vol 12415. Springer, Cham. https://doi.org/10.1007/978-3-030-61401-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-61401-0_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61400-3
Online ISBN: 978-3-030-61401-0
eBook Packages: Computer ScienceComputer Science (R0)