Abstract
Studying potentially harmful infectious agents for some population and trying to explain and predicts how the disease evolves in the time are difficult because many factors interactions. An solution is to analyse real systems by mean of simulations models. In these cases, Cellular Automata have been used with success, they can recreate a virtual world take account problem main features and their correlations. We developed an efficient and portable cellular automata model in Graphic Processing Units to simulate viral diseases propagation. The achieved efficiency allows us estimate in a short time the viral disease behaviour when it is known or not, as well as its associated uncertainty. Besides, it is suitable to test effects of different measures that tending towards stop the spread. We describe the solution and evaluate it for two viral diseases: Seasonal Influenza and COVID-19.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beauchemin, C., Samuel, J., Tuszynski, J.: A simple cellular automaton model for influenza a viral infections. J. Theor. Biol. 232(2), 223–234 (2005)
Casares, F., Tissera, P., Piccoli, F.: A parallel proposal for seir model using cellular automata. In: XXII Congreso Argentino de Ciencias de la Computación (CACIC 2016), pp. 208–219 (2016)
Gardner, M.: Mathematical games. Sci. Am. 222(1), 124–127 (1970)
Gaudiani, A., Luque, E., Garcia, P., Naiouf, M., De Giusti, A.: Optimización y computación paralela aplicados a mejorar la predicción de un simulador de cauce de rÃos. In: XXII Congreso Argentino de Ciencias de la Computación (CACIC 2016), pp. 179–188 (2016)
Gu, Y., Ding, J.: Research on rumors spread based on cellular automata. In: Yang, Y., Ma, M. (eds.) Proceedings of the 2nd International Conference on Green Communications and Networks 2012 (GCN 2012): Volume 1. Lecture Notes in Electrical Engineering, vol. 223. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35419-9_28
Han, J., Sharma, B.: Learn CUDA Programming: A Beginner’s Guide to GPU Programming and Parallel Computing with CUDA 10.x and C/C++. Packt Publishing, Birmingham (2019)
Kaeli, D.R., Mistry, P., Schaa, D., Zhang, D.P.: Heterogeneous Computing with OpenCL 2.0. Elsevier, Amsterdam (2015)
Kauffman, S.: Emergent properties in random complex automata. Phys. D: Nonlinear Phenom. 10(1), 145–156 (1984)
Kermack, W., McKendrick, A., Walker, G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 115(772), 700–721 (1927)
Kier, L.B., Seybold, P.G., Cheng, C.K.: Modeling Chemical Systems Using Cellular Automata. Springer, Heidelberg (2005). https://doi.org/10.1007/1-4020-3690-6
Kirk, D., Hwu, W.: Programming Massively Parallel Processors, A Hands on Approach. Morgan Kaufmann, Elsevier, Burlington (2010)
Kurgalin, S., Borzunov, S.: Implementation of parallel algorithms. A Practical Approach to High-Performance Computing, pp. 93–115. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27558-7_6
Li, X., Wu, J., Li, X.: Concluding remarks—looking to the future. Theory of Practical Cellular Automaton, pp. 323–352. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7497-4_9
McMillen, C.W.: Pandemics: A Very Short Introduction. Very Short Introductions. Oxford University Press, Oxford (2016)
World Health Organization: Influenza (seasonal) (2018). Fact sheet
World Health Organization: Coronavirus disease (covid-19) (2020). Situation Report 116
Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., Phillips, J.: GPU computing. IEEE 96, 879–899 (2008)
Pacheco, P.: An Introduction to Parallel Programming. Elsevier, Amsterdam (2011)
Tissera, P., Castro, A., Printista, A., Luque, E.: Simulating behaviours to face up an emergency evacuation. CoRR arxiv:1401.5209 (2014)
Wolfram, S.: Universality and complexity in cellular automata. Phys. D: Nonlinear Phenom. 10(1), 1–35 (1984)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Lucero, M., Miranda, N., Piccoli, F. (2020). Viral Diseases Propagation Analysis in Short Time. In: Rucci, E., Naiouf, M., Chichizola, F., De Giusti, L. (eds) Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2020. Communications in Computer and Information Science, vol 1291. Springer, Cham. https://doi.org/10.1007/978-3-030-61218-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-61218-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61217-7
Online ISBN: 978-3-030-61218-4
eBook Packages: Computer ScienceComputer Science (R0)