[go: up one dir, main page]

Skip to main content

Fine-Grained Power Modeling of Multicore Processors Using FFNNs

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12471))

Included in the following conference series:

Abstract

To minimize power consumption while maximizing performance, today’s multicore processors rely on fine-grained run-time dynamic power information – both in the time domain, e.g. \(\mu s\) to ms, and space domain, e.g. core-level. The state-of-the-art for deriving such power information is mainly based on predetermined power models which use linear modeling techniques to determine the core-performance/core-power relationship. However, with multicore processors becoming ever more complex, linear modeling techniques cannot capture all possible core-performance related power states anymore. Although, artificial neural networks (ANN) have been proposed for coarse-grained power modeling of servers with time resolutions in the range of seconds, no work has yet investigated fine-grained ANN-based power modeling. In this paper, we explore feed-forward neural networks (FFNNs) for core-level power modeling with estimation rates in the range of 10 kHz. To achieve a high estimation accuracy, we determine optimized neural network architectures and train FFNNs on performance counter and power data from a complex-out-of-order processor architecture. We show that, relative power estimation error decreases on average by 7.5% compared to a state-of-the-art linear power modeling approach and decreases by 5.5% compared to a multivariate polynomial regression model. Furthermore, we propose an implementation for run-time inference of the power modeling FFNN and show that the area overhead is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ARM Limited: Cortex-M0 technical reference manual. Technical Report (2009)

    Google Scholar 

  2. Bertran, R., Gonzelez, M., Martorell, X., Navarro, N., Ayguade, E.: A systematic methodology to generate decomposable and responsive power models for CMPs. IEEE Trans. Comput. 62(7), 1289–1302 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bienia, C.: Benchmarking Modern Multiprocessors (2011)

    Google Scholar 

  4. Bircher, W.L., John, L.K.: Complete system power estimation using processor performance events. IEEE Trans. Comput. 61(4), 563–577 (2012)

    Article  MathSciNet  Google Scholar 

  5. Carlson, T.E., Heirman, W., Eyerman, S., Hur, I., Eeckhout, L.: An evaluation of high-level mechanistic core models. ACM TACO 11(3), 1–25 (2014)

    Article  Google Scholar 

  6. Chadha, M., Ilsche, T., Bielert, M., Nagel, W.E.: A statistical approach to power estimation for x86 processors. In: Proceedings - 2017 IEEE 31st International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2017 (2017)

    Google Scholar 

  7. Cupertino, L.F., Da Costa, G., Pierson, J.-M.: Towards a generic power estimator. Comput. Sci. Res. Dev. 30(2), 145–153 (2014). https://doi.org/10.1007/s00450-014-0264-x

    Article  Google Scholar 

  8. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 17(4), 879–892 (2006)

    Article  Google Scholar 

  9. Huang, W., et al.: Accurate fine-grained processor power proxies. In: IEEE/ACM MICRO (2012)

    Google Scholar 

  10. Kim, Y., Mercati, P., More, A., Shriver, E., Rosing, T.: P4: phase-based power/performance prediction of heterogeneous systems via neural networks. In: IEEE/ACM ICCAD (2017)

    Google Scholar 

  11. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.: McPAT: an integrated power, area, and timing modeling framework for multicore and manycore architectures. In: IEEE MICRO (2009)

    Google Scholar 

  12. Lin, W., Wu, G., Wang, X., Li, K.: An artificial neural network approach to power consumption model construction for servers in cloud data centers. IEEE Trans. Sustain. Comput. 5(3), 329–340 (2019)

    Article  Google Scholar 

  13. McCullough, J.C., et al.: Evaluating the effectiveness of model-based power characterization. In: Usenix Atc (2011)

    Google Scholar 

  14. Möbius, C., Dargie, W., Schill, A.: Power consumption estimation models for processors, virtual machines, and servers. IEEE TPDS 25(6), 1600–1614 (2014)

    Google Scholar 

  15. Pathania, A., Henkel, J.: HotSniper: sniper-based toolchain for many-core thermal simulations in open systems. IEEE Embed. Syst. Lett. 11(2), 54–57 (2019)

    Article  Google Scholar 

  16. Rapp, M., Pathania, A., Mitra, T., Henkel, J.: Prediction-Based Task Migration on S-NUCA Many-Cores. In: DATE (2019)

    Google Scholar 

  17. Rapp, M., Sagi, M., Pathania, A., Herkersdorf, A., Henkel, J.: Power-and cache-aware task mapping with dynamic power budgeting for many-cores. IEEE Trans. Comput. 69(1), 1–13 (2019)

    Article  Google Scholar 

  18. Rethinagiri, S.K., Palomar, O., Ben Atitallah, R., Niar, S., Unsal, O., Kestelman, A.C.: System-level power estimation tool for embedded processor based platforms. In: ACM RAPIDO (2014)

    Google Scholar 

  19. Samei, Y., Dömer, R.: Automated estimation of power consumption for rapid system level design. In: IEEE IPCCC (2014)

    Google Scholar 

  20. Shahid, A., Fahad, M., Manumachu, R.R., Lastovetsky, A.: Improving the accuracy of energy predictive models for multicore CPUs using additivity of performance monitoring counters. In: Malyshkin, V. (ed.) PaCT 2019. LNCS, vol. 11657, pp. 51–66. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25636-4_5

    Chapter  Google Scholar 

  21. Su, B., Gu, J., Shen, L., Huang, W., Greathouse, J.L., Wang, Z.: PPEP: online performance, power, and energy prediction framework and DVFS space exploration. In: IEEE/ACM MICRO (2014)

    Google Scholar 

  22. Walker, M.J., et al.: Accurate and stable run-time power modeling for mobile and embedded CPUs. In: IEEE TCAD (2017)

    Google Scholar 

  23. Woof, S.C., Ohara, M., Torriet, E.: The SPLASH-2 programs: characterization and methodological considerations. In: ACM ISCA (1995)

    Google Scholar 

  24. Wu, W., Lin, W., He, L., Wu, G., Hsu, C.H.: A Power Consumption Model for Cloud Servers Based on Elman Neural Network. IEEE Transactions on Cloud Computing (2019)

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnummer 146371743 - TRR 89 “Invasive Computing”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Sagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sagi, M., Vu Doan, N.A., Fasfous, N., Wild, T., Herkersdorf, A. (2020). Fine-Grained Power Modeling of Multicore Processors Using FFNNs. In: Orailoglu, A., Jung, M., Reichenbach, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2020. Lecture Notes in Computer Science(), vol 12471. Springer, Cham. https://doi.org/10.1007/978-3-030-60939-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60939-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60938-2

  • Online ISBN: 978-3-030-60939-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics