[go: up one dir, main page]

Skip to main content

Multi-Cue and Temporal Attention for Person Recognition in Videos

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12306))

Included in the following conference series:

  • 1628 Accesses

Abstract

Recognizing persons under unconstrained settings is challenging due to variation in pose and viewpoint, partial occlusion, and motion blur. Inference only by face-based recognition techniques would fail in these cases. Previous studies mainly focus on this problem on still images while they cannot handle the temporal variations in videos. In this work, we aim to tackle these challenges and propose a Multi-Cue and Temporal Attention (MCTA) framework to recognize persons in videos. For the spatial domain, we extract features from multiple visual cue regions and utilize a Multi-Cue Attention Module to integrate them. For the temporal domain, we adopt a Temporal Attention Module to combine the video frames, which is learned to assess the quality of different frames adaptively. By this means, MCTA can comprehensively explore the complementary information in spatial-temporal dimensions for person recognition in videos. Moreover, we introduce Character Recognition in Videos (CRV), a new video dataset for character recognition under challenging settings. Extensive experiments on CRV demonstrate the effectiveness of our proposed framework. Dataset with annotations and all codes used in this paper are publicly available at https://github.com/zhezheey/MCTA.

Supported by the National Key R&D Program of China (2018YFC0831500), the National Natural Science Foundation of China (No. 61972047), and the NSFC-General Technology Basic Research Joint Funds (No. U1936220).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: CVPR, pp. 815–823 (2015)

    Google Scholar 

  2. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: Additive angular margin loss for deep face recognition. In: CVPR, pp. 4690–4699 (2019)

    Google Scholar 

  3. Song, G., Leng, B., Liu, Y., Hetang, C., Cai, S.: Region-based quality estimation network for large-scale person re-identification. In: AAAI, pp. 7347–7354 (2018)

    Google Scholar 

  4. Zheng, Z., Yang, X., Yu, Z., Zheng, L., Yang, Y., Kautz, J.: Joint discriminative and generative learning for person re-identification. In: CVPR, pp. 2138–2147 (2019)

    Google Scholar 

  5. Dehak, N., Kenny, P.J., Dehak, R., Dumouchel, P., Ouellet, P.: Front-end factor analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process. 19(4), 788–798 (2011)

    Article  Google Scholar 

  6. Oh, S.J., Benenson, R., Fritz, M., Schiele, B.: Person recognition in personal photo collections. In: ICCV, pp. 3862–3870 (2015)

    Google Scholar 

  7. Kumar, V., Namboodiri, A., Paluri, M., Jawahar, C.V.: Pose-aware person recognition. In: CVPR, pp. 6223–6232 (2017)

    Google Scholar 

  8. Zhang, N., Paluri, M., Taigman, Y., Fergus, R., Bourdev, L.: Beyond frontal faces: Improving person recognition using multiple cues. In: CVPR, pp. 4804–4813 (2015)

    Google Scholar 

  9. Li, H., Brandt, J., Lin, Z., Shen, X., Hua, G.: A multi-level contextual model for person recognition in photo albums. In: CVPR, pp. 1297–1305 (2016)

    Google Scholar 

  10. Huang, Q., Xiong, Y., Lin, D.: Unifying identification and context learning for person recognition. In: CVPR, pp. 2217–2225 (2018)

    Google Scholar 

  11. Liu, Y., et al.: iQIYI celebrity video identification challenge. In: ACM MM, pp. 2516–2520 (2019)

    Google Scholar 

  12. Huang, Z., Chang, Y., Chen, W., Shen, Q., Liao, J.: Residualdensenetwork: a simple approach for video person identification. In: ACM MM, pp. 2521–2525 (2019)

    Google Scholar 

  13. Fang, X., Zou, Y.: Make the best of face clues in iQIYI celebrity video identification challenge 2019. In: ACM MM, pp. 2526–2530 (2019)

    Google Scholar 

  14. Dong, C., Gu, Z., Huang, Z., Ji, W., Huo, J., Gao, Y.: Deepmef: a deep model ensemble framework for video based multi-modal person identification. In: ACM MM, pp. 2531–2534 (2019)

    Google Scholar 

  15. Chen, J., Yang, L., Xu, Y., Huo, J., Shi, Y., Gao, Y.: A novel deep multi-modal feature fusion method for celebrity video identification. In: ACM MM, pp. 2535–2538 (2019)

    Google Scholar 

  16. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on Faces in ’Real-Life’ Images: Detection, Alignment, and Recognition, pp. 1–14 (2008)

    Google Scholar 

  17. Huang, Q., Liu, W., Lin, D.: Person search in videos with one portrait through visual and temporal links. In: ECCV, pp. 425–441 (2018)

    Google Scholar 

  18. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Gool, L.V.: Temporal segment networks: towards good practices for deep action recognition. In: ECCV, pp. 20–36 (2016)

    Google Scholar 

  19. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  20. Lin, T.Y., et al.: Microsoft COCO: Common Objects in Context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Sig. Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  22. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  23. Marin-Jimenez, M.J., Kalogeiton, V., Medina-Suarez, P., Zisserman, A.: LAEO-Net: revisiting people looking at each other in videos. In: CVPR, pp. 3477–3485 (2019)

    Google Scholar 

  24. Vu, T.H., Osokin, A., Laptev, I.: Context-aware cnns for person head detection. In: ICCV, pp. 2893–2901 (2015)

    Google Scholar 

  25. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  27. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, W., Wu, B., Li, F., Liu, Z. (2020). Multi-Cue and Temporal Attention for Person Recognition in Videos. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12306. Springer, Cham. https://doi.org/10.1007/978-3-030-60639-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60639-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60638-1

  • Online ISBN: 978-3-030-60639-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics