[go: up one dir, main page]

Skip to main content

On Parametric Linear System Solving

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12291))

Included in the following conference series:

Abstract

Parametric linear systems are linear systems of equations in which some symbolic parameters, that is, symbols that are not considered to be candidates for elimination or solution in the course of analyzing the problem, appear in the coefficients of the system. In this work we assume that the symbolic parameters appear polynomially in the coefficients and that the only variables to be solved for are those of the linear system. The consistency of the system and expression of the solutions may vary depending on the values of the parameters. It is well-known that it is possible to specify a covering set of regimes, each of which is a semi-algebraic condition on the parameters together with a solution description valid under that condition.

We provide a method of solution that requires time polynomial in the matrix dimension and the degrees of the polynomials when there are up to three parameters. In previous methods the number of regimes needed is exponential in the system dimension and polynomial degree of the parameters. Our approach exploits the Hermite and Smith normal forms that may be computed when the system coefficient domain is mapped to the univariate polynomial domain over suitably constructed fields. Our approach effectively identifies intrinsic singularities and ramification points where the algebraic and geometric structure of the matrix changes. Parametric eigenvalue problems can be addressed as well: simply treat \(\lambda \) as a parameter in addition to those in \(\mathbf {A}\) and solve the parametric system \((\lambda \mathbf {I} - \mathbf {A})\mathbf {u} = 0\). The algebraic conditions on \(\lambda \) required for a nontrivial nullspace define the eigenvalues. We do not directly address the problem of computing the Jordan form, but our approach allows the construction of the algebraic and geometric eigenvalue multiplicities revealed by the Frobenius form, which is a key step in the construction of the Jordan form of a matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is merely an anecdote, but one of the present authors attests that this really has happened.

References

  1. Boyer, B., Kaltofen, E.L.: Numerical linear system solving with parametric entries by error correction. In: Proceedings of the 2014 Symposium on Symbolic-Numeric Computation. pp. 33–38 (2014)

    Google Scholar 

  2. Buchberger, B.: Applications of Gröbner bases in non-linear computational geometry. In: Janßen, R. (ed.) Trends in Computer Algebra, pp. 52–80. Springer, Berlin, Heidelberg (1988)

    Chapter  Google Scholar 

  3. Camargos Couto, A.C., Moreno Maza, M., Linder, D., Jeffrey, D.J., Corless, R.M.: Comprehensive LU factors of polynomial matrices. In: Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds.) Mathematical Aspects of Computer and Information Sciences, pp. 80–88. Springer International Publishing, Cham (2020)

    Chapter  Google Scholar 

  4. Corless, R.M., Moreno Maza, M., Thornton, S.E.: Jordan canonical form with parameters from Frobenius form with parameters. In: Blömer, J., Kotsireas, I.S., Kutsia, T., Simos, D.E. (eds.) MACIS 2017. LNCS, vol. 10693, pp. 179–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72453-9_13

    Chapter  Google Scholar 

  5. Corless, R.M.: Essential Maple 7: An Introduction For Scientific Programmers. Springer Science & Business Media, Berlin (2002)

    MATH  Google Scholar 

  6. Corless, R.M., Jeffrey, D.J.: The Turing factorization of a rectangular matrix. SIGSAM Bull. 31(3), 20–30 (1997). https://doi.org/10.1145/271130.271135

    Article  Google Scholar 

  7. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  8. Dautray, R., Lions, J.: Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, Berlin (1988). https://doi.org/10.1007/978-3-642-61566-5

    Book  MATH  Google Scholar 

  9. Dessombz, O., Thouverez, F., Laîné, J.P., Jézéquel, L.: Analysis of mechanical systems using interval computations applied to finite element methods. J. Sound Vibration 239(5), 949–968 (2001). https://doi.org/10.1006/jsvi.2000.3191

    Article  MathSciNet  MATH  Google Scholar 

  10. Giesbrecht, M., Kim, M.S.: Computing the Hermite form of a matrix of Ore polynomials. J. Algebra 376, 341–362 (2013)

    Article  MathSciNet  Google Scholar 

  11. Goldman, L.: Integrals of multinomial systems of ordinary differential equations. J. Pure Appl. Algebra 45(3), 225–240 (1987). https://doi.org/10.1016/0022-4049(87)90072-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  13. Jensen, K.: Coloured Petri nets. Vol. 1. Monographs in Theoretical Computer Science. An EATCS Series, Springer-Verlag, Berlin (1997). https://doi.org/10.1007/978-3-642-60794-3, https://doi.org/10.1007/978-3-642-60794-3, basic concepts, analysis methods and practical use, Corrected reprint of the second (1996) edition

  14. Kaltofen, E., Krishnamoorthy, M., Saunders, B.D.: Fast parallel computation of Hermite and Smith forms of polynomial matrices. SIAM J. Algebraic Discrete Methods 8(4), 683–690 (1987)

    Article  MathSciNet  Google Scholar 

  15. Kaltofen, E.L., Pernet, C., Storjohann, A., Waddell, C.: Early termination in parametric linear system solving and rational function vector recovery with error correction. In: Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation. pp. 237–244 (2017)

    Google Scholar 

  16. Kapur, D., Sun, Y., Wang, D.: An efficient algorithm for computing a comprehensive Gröbner system of a parametric polynomial system. J. Symb. Comput. 49, 27–44 (2013)

    Article  Google Scholar 

  17. Kolev, L.V.: Outer solution of linear systems whose elements are affine functions of interval parameters. Reliab. Comput. 8(6), 493–501 (2002). https://doi.org/10.1023/A:1021320711392

    Article  MathSciNet  MATH  Google Scholar 

  18. Lemaire, F., Maza, M.M., Xie, Y.: The regularchains library. In: Maple conference. vol. 5, pp. 355–368 (2005)

    Google Scholar 

  19. Montes, A.: The Gröbner Cover. ACM, vol. 27. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03904-2

    Book  MATH  Google Scholar 

  20. Montes, A., Wibmer, M.: Gröbner bases for polynomial systems with parameters. J. Symb. Comput. 45(12), 1391–1425 (2010)

    Article  Google Scholar 

  21. Muhanna, R.L., Mullen, R.L.: Uncertainty in mechanics problems–interval-based approach. J. Eng. Mech. 127(6), 557–566 (2001)

    Article  Google Scholar 

  22. Rahman, S.A., Zou, X.: Modelling the impact of vaccination on infectious diseases dynamics. J. Biol. Dyn. 9(sup1), 307–320 (2015)

    Article  MathSciNet  Google Scholar 

  23. Savageau, M.A., Voit, E.O., Irvine, D.H.: Biochemical systems theory and metabolic control theory. I. Fundamental similarities and differences. Math. Biosci. 86(2), 127–145 (1987). https://doi.org/10.1016/0025-5564(87)90007-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Savageau, M.A., Voit, E.O., Irvine, D.H.: Biochemical systems theory and metabolic control theory. II. The role of summation and connectivity relationships. Math. Biosci. 86(2), 147–169 (1987). https://doi.org/10.1016/0025-5564(87)90008-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Sit, W.Y.: An algorithm for solving parametric linear systems. J. Symb. Comput. 13(4), 353–394 (1992)

    Article  MathSciNet  Google Scholar 

  26. Sloane, N.: The on-line encyclopedia of integer sequences (2020), http://oeis.org

  27. Storjohann, A.: Algorithms for matrix canonical forms. Ph.D. thesis, ETH Zurich (2000)

    Google Scholar 

  28. Trench, W.F.: Properties of some generalizations of Kac-Murdock-Szego matrices. Contemp. Math. 281, 233–246 (2001)

    Article  MathSciNet  Google Scholar 

  29. Wahl, L.M., Betti, M.I., Dick, D.W., Pattenden, T., Puccini, A.J.: Evolutionary stability of the lysis-lysogeny decision: Why be virulent? Evolution 73(1), 92–98 (2019)

    Google Scholar 

  30. Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comput. 14(1), 1–29 (1992)

    Article  MathSciNet  Google Scholar 

  31. Winkels, H., Meika, M.: An integration of efficiency projections into the Geoffrion approach for multiobjective linear programming. Eur. J. Oper. Res. 16(1), 113–127 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada and by the Ontario Research Centre for Computer Algebra. The third author, L. Rafiee Sevyeri, would like to thank the Symbolic Computation Group (SCG) at the David R. Cheriton School of Computer Science of the University of Waterloo for their support while she was a visiting researcher there.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leili Rafiee Sevyeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corless, R.M., Giesbrecht, M., Rafiee Sevyeri, L., Saunders, B.D. (2020). On Parametric Linear System Solving. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60026-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60025-9

  • Online ISBN: 978-3-030-60026-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics