[go: up one dir, main page]

Skip to main content

Learning Invariant Feature Representation to Improve Generalization Across Chest X-Ray Datasets

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

Abstract

Chest radiography is the most common medical image examination for screening and diagnosis in hospitals. Automatic interpretation of chest X-rays at the level of an entry-level radiologist can greatly benefit work prioritization and assist in analyzing a larger population. Subsequently, several datasets and deep learning-based solutions have been proposed to identify diseases based on chest X-ray images. However, these methods are shown to be vulnerable to shift in the source of data: a deep learning model performing well when tested on the same dataset as training data, starts to perform poorly when it is tested on a dataset from a different source. In this work, we address this challenge of generalization to a new source by forcing the network to learn a source-invariant representation. By employing an adversarial training strategy, we show that a network can be forced to learn a source-invariant representation. Through pneumonia-classification experiments on multi-source chest X-ray datasets, we show that this algorithm helps in improving classification accuracy on a new source of X-ray dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint (2019). arXiv:1907.02893

  2. Bluemke, D.A., et al.: Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers-from the radiology editorial board (2020)

    Google Scholar 

  3. Bousquet, O., Boucheron, S., Lugosi, G.: Introduction to statistical learning theory. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 169–207. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_8

    Chapter  MATH  Google Scholar 

  4. Bousquet, O., Elisseeff, A.: Stability and generalization. J. Mach. Learn. Res. 2(Mar), 499–526 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Chen, C., Dou, Q., Chen, H., Heng, P.-A.: Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest X-ray segmentation. In: Shi, Y., Suk, H-Il, Liu, Mingxia (eds.) MLMI 2018. LNCS, vol. 11046, pp. 143–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_17

    Chapter  Google Scholar 

  6. Coden, A., Gruhl, D., Lewis, N., Tanenblatt, M., Terdiman, J.: Spot the drug! An unsupervised pattern matching method to extract drug names from very large clinical corpora. In: 2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology, pp. 33–39. IEEE (2012)

    Google Scholar 

  7. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning-Volume 37, pp. 1180–1189. JMLR. org (2015)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (cvpr), vol. 5, p. 6 (2015)

    Google Scholar 

  10. Irvin, J., et al.: Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison. CoRR abs/1901.07031 (2019). http://arxiv.org/abs/1901.07031

  11. Johnson, A.E.W., et al.: MIMIC-CXR: a large publicly available database of labeled chest radiographs (2019). arXiv:1901.07042 [cs.CV]

  12. Johnson, A.E., Pollard, T.J., Shen, L., Li-wei, H.L., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L.A., Mark, R.G.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)

    Article  Google Scholar 

  13. Kawaguchi, K., Bengio, Y., Verma, V., Kaelbling, L.P.: Towards understanding generalization via analytical learning theory. arXiv preprint (2018). arXiv:1802.07426

  14. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. CoRR abs/1706.02515 (2017). http://arxiv.org/abs/1706.02515

  15. Li, C.L., Chang, W.C., Cheng, Y., Yang, Y., Póczos, B.: Mmd gan: towards deeper understanding of moment matching network. In: Advances in Neural Information Processing Systems, pp. 2203–2213 (2017)

    Google Scholar 

  16. Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015)

    Google Scholar 

  17. Loper, E., Bird, S.: NLTK: the natural language toolkit (2002). arXiv:cs/0205028 [cs.CL]

  18. Matsuura, T., Harada, T.: Domain generalization using a mixture of multiple latent domains. arXiv preprint (2019). arXiv:1911.07661

  19. McAllester, D.A.: Some pac-bayesian theorems. Mach. Learn. 37(3), 355–363 (1999)

    Article  Google Scholar 

  20. McKinney, S.M., et al.: International evaluation of an AI system for breast cancer screening. Nature 577(7788), 89–94 (2020)

    Article  Google Scholar 

  21. Moradi, M., Madani, A., Gur, Y., Guo, Y., Syeda-Mahmood, T.: Bimodal network architectures for automatic generation of image annotation from text. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, Gabor (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 449–456. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_51

    Chapter  Google Scholar 

  22. Rajpurkar, P., et al.: Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint (2017). arXiv:1711.05225

  23. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  24. Sener, O., Song, H.O., Saxena, A., Savarese, S.: Learning transferrable representations for unsupervised domain adaptation. In: Advances in Neural Information Processing Systems, pp. 2110–2118 (2016)

    Google Scholar 

  25. Syeda-Mahmood, T., et al.: Chest x-ray report generation through fine-grained label learning. MICCAI 2020, arXiv preprint (2020). arXiv:2007.13831

  26. Vapnik, V.: The Nature of Statistical Learning Theory. Springer science & business media, Berlin (2013)

    MATH  Google Scholar 

  27. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  28. Xu, A., Raginsky, M.: Information-theoretic analysis of generalization capability of learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2524–2533 (2017)

    Google Scholar 

  29. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. In: International Conference in Learning and Representation (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Moradi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghimire, S., Kashyap, S., Wu, J.T., Karargyris, A., Moradi, M. (2020). Learning Invariant Feature Representation to Improve Generalization Across Chest X-Ray Datasets. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics