[go: up one dir, main page]

Skip to main content

On the Complexity of Acyclic Modules in Automata Networks

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12337))

  • 611 Accesses

Abstract

Modules were introduced as an extension of Boolean automata networks. They have inputs which are used in the computation said modules perform, and can be used to wire modules with each other. In the present paper we extend this new formalism and study the specific case of acyclic modules. These modules prove to be well described in their limit behavior by functions called output functions. We provide other results that offer an upper bound on the number of attractors in an acyclic module when wired recursively into an automata network, alongside a diversity of complexity results around the difficulty of deciding the existence of cycles depending on the number of inputs and the size of said cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alon, N.: Asynchronous threshold networks. Graphs Combin. 1, 305–310 (1985). https://doi.org/10.1007/BF02582959

    Article  MathSciNet  MATH  Google Scholar 

  2. Aracena, J.: Maximum number of fixed points in regulatory Boolean networks. Bull. Math. Biol. 70, 1398–1409 (2008). https://doi.org/10.1007/s11538-008-9304-7

    Article  MathSciNet  MATH  Google Scholar 

  3. Aracena, J., Gómez, L., Salinas, L.: Limit cycles and update digraphs in Boolean networks. Discrete Appl. Math. 161, 1–12 (2013)

    Article  MathSciNet  Google Scholar 

  4. Aracena, J., Richard, A., Salinas, L.: Number of fixed points and disjoint cycles in monotone Boolean networks. SIAM J. Discrete Math. 31, 1702–1725 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bernot, G., Tahi, F.: Behaviour preservation of a biological regulatory network when embedded into a larger network. Fund. Inform. 91, 463–485 (2009)

    Article  MathSciNet  Google Scholar 

  6. Biane, C., Delaplace, F.: Causal reasoning on Boolean control networks based on abduction: theory and application to cancer drug discovery. IEEE/ACM Trans. Comput. Biol. Bioinform. 16, 1574–1585 (2019)

    Article  Google Scholar 

  7. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3, e1672 (2008)

    Article  Google Scholar 

  8. Delaplace, F., Klaudel, H., Melliti, T., Sené, S.: Analysis of modular organisation of interaction networks based on asymptotic dynamics. In: Gilbert, D., Heiner, M. (eds.) CMSB 2012. LNCS, pp. 148–165. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33636-2_10

    Chapter  Google Scholar 

  9. Demongeot, J., Goles, E., Morvan, M., Noual, M., Sené, S.: Attraction basins as gauges of robustness against boundary conditions in biological complex systems. PLoS One 5, e11793 (2010)

    Article  Google Scholar 

  10. Demongeot, J., Noual, M., Sené, S.: Combinatorics of Boolean automata circuits dynamics. Discr. Appl. Math. 160, 398–415 (2012)

    Article  MathSciNet  Google Scholar 

  11. Elspas, B.: The theory of autonomous linear sequential networks. IRE Trans. Circuit Theory 6(1), 45–60 (1959)

    Article  Google Scholar 

  12. Feder, T.: Stable networks and product graphs. Ph.D thesis, Stanford Univ. (1990)

    Google Scholar 

  13. Floreen, P., Orponen, P.: Counting stable states and sizes of attraction domains in Hopfield nets is hard. In: Proceedings of the of IJCNN 1989, pp. 395–399 (1989)

    Google Scholar 

  14. Goles, E., Salinas, L.: Comparison between parallel and serial dynamics of Boolean networks. Theor. Comput. Sci. 396, 247–253 (2008)

    Article  MathSciNet  Google Scholar 

  15. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  16. Mendoza, L., Alvarez-Buylla, E.R.: Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J. Theor. Biol. 193, 307–319 (1998)

    Article  Google Scholar 

  17. Noual, M., Sené, S.: Synchronism versus asynchronism in monotonic Boolean automata networks. Nat. Comput. 17(2), 393–402 (2017). https://doi.org/10.1007/s11047-016-9608-8

    Article  MathSciNet  Google Scholar 

  18. Orponen, P.: Neural networks and complexity theory. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629, pp. 50–61. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55808-X_5

    Chapter  Google Scholar 

  19. Pardo, J., Ivanov, S., Delaplace, F.: Sequential reprogramming of biological network fate. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB 2019. LNCS, vol. 11773, pp. 20–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31304-3_2

    Chapter  Google Scholar 

  20. Perrot, K., Perrotin, P., Sené, S.: A framework for (de)composing with boolean automata networks. In: Durand-Lose, J., Verlan, S. (eds.) MCU 2018. LNCS, vol. 10881, pp. 121–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92402-1_7

    Chapter  Google Scholar 

  21. Robert, F.: Discrete Iterations: A Metric Study. Springer, Heidelberg (1986). https://doi.org/10.1007/978-3-642-61607-5

    Book  Google Scholar 

  22. Siebert, H.: Dynamical and structural modularity of discrete regulatory networks. In: Proceedings of COMPMOD 2009, volume 6 of EPTCS, pp. 109–124 (2009)

    Google Scholar 

  23. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42, 563–585 (1973)

    Article  Google Scholar 

Download references

Acknowledgments

The works of Kévin Perrot and Sylvain Sené were funded mainly by their salaries as French State agents, affiliated to Aix-Marseille Univ., Univ. de Toulon, CNRS, LIS, UMR 7020, Marseille, France (both) and to Univ. Côte d’Azur, CNRS, I3S, UMR 7271, Sophia Antipolis, France (KP), and secondarily by ANR-18-CE40-0002 FANs project, ECOS-Sud C16E01 project, STIC AmSud CoDANet 19-STIC-03 (Campus France 43478PD) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pacôme Perrotin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perrot, K., Perrotin, P., Sené, S. (2020). On the Complexity of Acyclic Modules in Automata Networks. In: Chen, J., Feng, Q., Xu, J. (eds) Theory and Applications of Models of Computation. TAMC 2020. Lecture Notes in Computer Science(), vol 12337. Springer, Cham. https://doi.org/10.1007/978-3-030-59267-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59267-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59266-0

  • Online ISBN: 978-3-030-59267-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics