Abstract
Proactive process adaptation can prevent and mitigate upcoming problems during process execution by using predictions about how an ongoing case will unfold. There is an important trade-off with respect to these predictions: Earlier predictions leave more time for adaptations than later predictions, but earlier predictions typically exhibit a lower accuracy than later predictions, because not much information about the ongoing case is available. An emerging solution to address this trade-off is to continuously generate predictions and only trigger proactive adaptations when prediction reliability is greater than a predefined threshold. However, a good threshold is not known a priori. One solution is to empirically determine the threshold using a subset of the training data. While an empirical threshold may be optimal for the training data used and the given cost structure, such a threshold may not be optimal over time due to non-stationarity of process environments, data, and cost structures. Here, we use online reinforcement learning as an alternative solution to learn when to trigger proactive process adaptations based on the predictions and their reliability at run time. Experimental results for three public data sets indicate that our approach may on average lead to 12.2% lower process execution costs compared to empirical thresholding.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Hyper-parameters are used to configure the machine learning algorithms and thereby control the learning process.
- 2.
- 3.
References
Bosnic, Z., Kononenko, I.: Comparison of approaches for estimating reliability of individual regression predictions. Data Knowl. Eng. 67(3), 504–516 (2008)
Cabanillas, C., Di Ciccio, C., Mendling, J., Baumgrass, A.: Predictive task monitoring for business processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 424–432. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_31
Conforti, R., de Leoni, M., Rosa, M.L., van der Aalst, W.M.P., ter Hofstede, A.H.M.: A recommendation system for predicting risks across multiple business process instances. Decis. Support Syst. 69, 1–19 (2015)
D’Angelo, M., et al.: On learning in collective self-adaptive systems: state of practice and a 3D framework. In: Litoiu, M., Clarke, S., Tei, K. (eds.) 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS@ICSE 2019, Montreal, QC, Canada, pp. 13–24. ACM (2019)
Dewey, D.: Reinforcement learning and the reward engineering principle. In: 2014 AAAI Spring Symposia, Stanford University, Palo Alto, California, USA, 24–26 March 2014. AAAI Press (2014)
Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1
Evermann, J., Rehse, J., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)
Fahrenkrog-Petersen, S.A., et al.: Fire now, fire later: alarm-based systems for prescriptive process monitoring. CoRR abs/1905.09568 (2019)
Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.: An eye into the future: leveraging a-priori knowledge in predictive business process monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 252–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_15
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Huang, Z., van der Aalst, W.M.P., Lu, X., Duan, H.: Reinforcement learning based resource allocation in business process management. Data Knowl. Eng. 70(1), 127–145 (2011)
Kang, B., Kim, D., Kang, S.: Real-time business process monitoring method for prediction of abnormal termination using KNNI-based LOF prediction. Expert Syst. Appl. 39(5), 6061–6068 (2012)
Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_21
Liu, N., Huang, J., Cui, L.: A framework for online process concept drift detection from event streams. In: 2018 International Conference on Services Computing, SCC 2018, San Francisco, CA, USA, pp. 105–112. IEEE (2018)
Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Fast and accurate business process drift detection. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 406–422. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_27
Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2018)
Mehdiyev, N., Evermann, J., Fettke, P.: A multi-stage deep learning approach for business process event prediction. In: Loucopoulos, P., Manolopoulos, Y., Pastor, O., Theodoulidis, B., Zdravkovic, J. (eds.) 19th Conference on Business Informatics, CBI 2017, Thessaloniki, Greece, pp. 119–128. IEEE Computer Society (2017)
Metzger, A., Bohn, P.: Risk-based proactive process adaptation. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 351–366. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3_25
Metzger, A., Föcker, F.: Predictive business process monitoring considering reliability estimates. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 445–460. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_28
Metzger, A., Franke, J., Jansen, T.: Ensemble deep learning for proactive terminal process management at duisport. In: vom Brocke, J., Mendling, J., Rosemann, M. (eds.) Business Process Management Cases, vol. 2. Springer, Heidelberg (2020)
Metzger, A., Neubauer, A.: Considering non-sequential control flows for process prediction with recurrent neural networks. In: 44th Euromicro Conference on Software Engineering and Advanced Applications, SEAA, Prague, Czech Republic, pp. 268–272. IEEE Computer Society (2018)
Metzger, A., Neubauer, A., Bohn, P., Pohl, K.: Proactive process adaptation using deep learning ensembles. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 547–562. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_34
Nachum, O., Norouzi, M., Xu, K., Schuurmans, D.: Bridging the gap between value and policy based reinforcement learning. In: Advances in Neural Information Processing Systems 12 (NIPS 2017), pp. 2772–2782 (2017)
Nunes, V.T., Santoro, F.M., Werner, C.M.L., Ralha, C.G.: Real-time process adaptation: a context-aware replanning approach. IEEE Trans. Syst. Man Cybern. Syst. 48(1), 99–118 (2018)
Palm, A., Metzger, A., Pohl, K.: Online reinforcement learning for self-adaptive information systems. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 169–184. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_11
Park, G., Song, M.: Prediction-based resource allocation using LSTM and minimum cost and maximum flow algorithm. In: International Conference on Process Mining (ICPM 2019), Aachen, Germany, pp. 121–128 (2019)
Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006)
Poll, R., Polyvyanyy, A., Rosemann, M., Röglinger, M., Rupprecht, L.: Process forecasting: towards proactive business process management. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 496–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_29
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. CoRR abs/1707.06347 (2017)
Silvander, J.: Business process optimization with reinforcement learning. In: Shishkov, B. (ed.) BMSD 2019. LNBIP, vol. 356, pp. 203–212. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24854-3_13
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)
Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems 12 (NIPS 1999), pp. 1057–1063 (2000)
Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30
Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business process monitoring with structured and unstructured data. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_23
Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. TKDD 13(2), 17:1–17:57 (2019)
Teinemaa, I., Tax, N., de Leoni, M., Dumas, M., Maggi, F.M.: Alarm-based prescriptive process monitoring. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNBIP, vol. 329, pp. 91–107. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98651-7_6
Weber, B., Sadiq, S.W., Reichert, M.: Beyond rigidity - dynamic process lifecycle support. Comput. Sci. - R&D 23(2), 47–65 (2009)
Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC, Boca Raton (2012)
Acknowledgments
We cordially thank the anonymous reviewers for their constructive comments. Our research received funding from the EU’s Horizon 2020 R&I programme under grants 871493 (DataPorts) and 780351 (ENACT).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Metzger, A., Kley, T., Palm, A. (2020). Triggering Proactive Business Process Adaptations via Online Reinforcement Learning. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds) Business Process Management. BPM 2020. Lecture Notes in Computer Science(), vol 12168. Springer, Cham. https://doi.org/10.1007/978-3-030-58666-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-58666-9_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58665-2
Online ISBN: 978-3-030-58666-9
eBook Packages: Computer ScienceComputer Science (R0)