Abstract
The study of neural generative models of human sketches is a fascinating contemporary modeling problem due to the links between sketch image generation and the human drawing process. The landmark SketchRNN provided breakthrough by sequentially generating sketches as a sequence of waypoints. However this leads to low-resolution image generation, and failure to model long sketches. In this paper we present BézierSketch, a novel generative model for fully vector sketches that are automatically scalable and high-resolution. To this end, we first introduce a novel inverse graphics approach to stroke embedding that trains an encoder to embed each stroke to its best fit Bézier curve. This enables us to treat sketches as short sequences of paramaterized strokes and thus train a recurrent sketch generator with greater capacity for longer sketches, while producing scalable high-resolution results. We report qualitative and quantitative results on the Quick, Draw! benchmark.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bishop, C.M.: Mixture density networks. Technical report, Aston University (1994)
Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. In: CoNLL (2016)
De Boor, C., De Boor, C., Mathématicien, E.U., De Boor, C., De Boor, C.: A Practical Guide to Splines, vol. 27. Springer, New York (1978)
Dey, S., Riba, P., Dutta, A., Llados, J., Song, Y.Z.: Doodle to search: practical zero-shot sketch-based image retrieval. In: CVPR (2019)
Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S.M.A., Vinyals, O.: Synthesizing programs for images using reinforced adversarial learning. In: ICML (2018)
Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)
Graves, A.: Generating sequences with recurrent neural networks. CoRR abs/1308.0850 (2013)
Ha, D., Eck, D.: A neural representation of sketch drawings. In: ICLR (2018)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NIPS (2017)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. ICLR (2014)
Klare, B., Li, Z., Jain, A.: Matching forensic sketches to mug shot photos. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 639–646 (2011)
Kulkarni, T.D., Whitney, W., Kohli, P., Tenenbaum, J.B.: Deep convolutional inverse graphics network. In: NIPS (2015)
Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)
Laube, P., Franz, M.O., Umlauf, G.: Deep learning parametrization for B-spline curve approximation. In: 2018 International Conference on 3D Vision (3DV) (2018)
Liu, Y., Wang, W.: A revisit to least squares orthogonal distance fitting of parametric curves and surfaces. In: Chen, F., Jüttler, B. (eds.) GMP 2008. LNCS, vol. 4975, pp. 384–397. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79246-8_29
Lopes, R.G., Ha, D., Eck, D., Shlens, J.: A learned representation for scalable vector graphics. In: ICCV (2019)
Marti, U.V., Bunke, H.: A full English sentence database for off-line handwriting recognition. In: ICDAR (1999)
Masood, A., Ejaz, S.: An efficient algorithm for robust curve fitting using cubic Bezier curves. In: Huang, D.-S., Zhang, X., Reyes García, C.A., Zhang, L. (eds.) ICIC 2010. LNCS (LNAI), vol. 6216, pp. 255–262. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14932-0_32
Pang, K., et al.: Generalising fine-grained sketch-based image retrieval. In: CVPR (2019)
Plass, M., Stone, M.: Curve-fitting with piecewise parametric cubics. In: SIGGRAPH (1983)
Rabiner, L., Juang, B.: An introduction to hidden Markov models. IEEE ASSP Mag. 3(1), 4–16 (1986)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)
Revow, M., Williams, C.K.I., Hinton, G.E.: Using generative models for handwritten digit recognition. IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 592–606 (1996)
Romaszko, L., Williams, C.K.I., Moreno, P., Kohli, P.: Vision-as-inverse-graphics: obtaining a rich 3D explanation of a scene from a single image. In: ICCVW (2017)
Salomon, D.: Curves and Surfaces for Computer Graphics. Springer, Heidelberg (2007). https://doi.org/10.1007/0-387-28452-4
Sangkloy, P., Burnell, N., Ham, C., Hays, J.: The sketchy database: learning to retrieve badly drawn bunnies. In: SIGGRAPH (2016)
Shao, L., Zhou, H.: Curve fitting with Bezier cubics. Graphical Models Image Process. 58(3), 223–232 (1996)
Song, J., Pang, K., Song, Y., Xiang, T., Hospedales, T.M.: Learning to sketch with shortcut cycle consistency. In: CVPR (2018)
Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: ICML (2015)
Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: NIPS (1999)
Yu, Q., Yang, Y., Liu, F., Song, Y.Z., Xiang, T., Hospedales, T.: Sketch-a-net: a deep neural network that beats humans. Int. J. Comput. Vis. 122, 411–425 (2017)
Yu, Q., Yang, Y., Song, Y.Z., Xiang, T., Hospedales, T.: Sketch-a-net that beats humans. In: BMVC (2015)
Zheng, W., Bo, P., Liu, Y., Wang, W.: Fast B-spline curve fitting by L-BFGS. Comput. Aided Geometr. Design 29(7), 448–462 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Das, A., Yang, Y., Hospedales, T., Xiang, T., Song, YZ. (2020). BézierSketch: A Generative Model for Scalable Vector Sketches. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12371. Springer, Cham. https://doi.org/10.1007/978-3-030-58574-7_38
Download citation
DOI: https://doi.org/10.1007/978-3-030-58574-7_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58573-0
Online ISBN: 978-3-030-58574-7
eBook Packages: Computer ScienceComputer Science (R0)