[go: up one dir, main page]

Skip to main content

BézierSketch: A Generative Model for Scalable Vector Sketches

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12371))

Included in the following conference series:

  • 3394 Accesses

Abstract

The study of neural generative models of human sketches is a fascinating contemporary modeling problem due to the links between sketch image generation and the human drawing process. The landmark SketchRNN provided breakthrough by sequentially generating sketches as a sequence of waypoints. However this leads to low-resolution image generation, and failure to model long sketches. In this paper we present BézierSketch, a novel generative model for fully vector sketches that are automatically scalable and high-resolution. To this end, we first introduce a novel inverse graphics approach to stroke embedding that trains an encoder to embed each stroke to its best fit Bézier curve. This enables us to treat sketches as short sequences of paramaterized strokes and thus train a recurrent sketch generator with greater capacity for longer sketches, while producing scalable high-resolution results. We report qualitative and quantitative results on the Quick, Draw! benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bishop, C.M.: Mixture density networks. Technical report, Aston University (1994)

    Google Scholar 

  2. Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. In: CoNLL (2016)

    Google Scholar 

  3. De Boor, C., De Boor, C., Mathématicien, E.U., De Boor, C., De Boor, C.: A Practical Guide to Splines, vol. 27. Springer, New York (1978)

    Book  Google Scholar 

  4. Dey, S., Riba, P., Dutta, A., Llados, J., Song, Y.Z.: Doodle to search: practical zero-shot sketch-based image retrieval. In: CVPR (2019)

    Google Scholar 

  5. Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S.M.A., Vinyals, O.: Synthesizing programs for images using reinforced adversarial learning. In: ICML (2018)

    Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  7. Graves, A.: Generating sequences with recurrent neural networks. CoRR abs/1308.0850 (2013)

    Google Scholar 

  8. Ha, D., Eck, D.: A neural representation of sketch drawings. In: ICLR (2018)

    Google Scholar 

  9. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NIPS (2017)

    Google Scholar 

  10. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  11. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. ICLR (2014)

    Google Scholar 

  13. Klare, B., Li, Z., Jain, A.: Matching forensic sketches to mug shot photos. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 639–646 (2011)

    Article  Google Scholar 

  14. Kulkarni, T.D., Whitney, W., Kohli, P., Tenenbaum, J.B.: Deep convolutional inverse graphics network. In: NIPS (2015)

    Google Scholar 

  15. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)

    Article  MathSciNet  Google Scholar 

  16. Laube, P., Franz, M.O., Umlauf, G.: Deep learning parametrization for B-spline curve approximation. In: 2018 International Conference on 3D Vision (3DV) (2018)

    Google Scholar 

  17. Liu, Y., Wang, W.: A revisit to least squares orthogonal distance fitting of parametric curves and surfaces. In: Chen, F., Jüttler, B. (eds.) GMP 2008. LNCS, vol. 4975, pp. 384–397. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79246-8_29

    Chapter  Google Scholar 

  18. Lopes, R.G., Ha, D., Eck, D., Shlens, J.: A learned representation for scalable vector graphics. In: ICCV (2019)

    Google Scholar 

  19. Marti, U.V., Bunke, H.: A full English sentence database for off-line handwriting recognition. In: ICDAR (1999)

    Google Scholar 

  20. Masood, A., Ejaz, S.: An efficient algorithm for robust curve fitting using cubic Bezier curves. In: Huang, D.-S., Zhang, X., Reyes García, C.A., Zhang, L. (eds.) ICIC 2010. LNCS (LNAI), vol. 6216, pp. 255–262. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14932-0_32

    Chapter  Google Scholar 

  21. Pang, K., et al.: Generalising fine-grained sketch-based image retrieval. In: CVPR (2019)

    Google Scholar 

  22. Plass, M., Stone, M.: Curve-fitting with piecewise parametric cubics. In: SIGGRAPH (1983)

    Google Scholar 

  23. Rabiner, L., Juang, B.: An introduction to hidden Markov models. IEEE ASSP Mag. 3(1), 4–16 (1986)

    Article  Google Scholar 

  24. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)

    Google Scholar 

  25. Revow, M., Williams, C.K.I., Hinton, G.E.: Using generative models for handwritten digit recognition. IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 592–606 (1996)

    Article  Google Scholar 

  26. Romaszko, L., Williams, C.K.I., Moreno, P., Kohli, P.: Vision-as-inverse-graphics: obtaining a rich 3D explanation of a scene from a single image. In: ICCVW (2017)

    Google Scholar 

  27. Salomon, D.: Curves and Surfaces for Computer Graphics. Springer, Heidelberg (2007). https://doi.org/10.1007/0-387-28452-4

    Book  MATH  Google Scholar 

  28. Sangkloy, P., Burnell, N., Ham, C., Hays, J.: The sketchy database: learning to retrieve badly drawn bunnies. In: SIGGRAPH (2016)

    Google Scholar 

  29. Shao, L., Zhou, H.: Curve fitting with Bezier cubics. Graphical Models Image Process. 58(3), 223–232 (1996)

    Article  Google Scholar 

  30. Song, J., Pang, K., Song, Y., Xiang, T., Hospedales, T.M.: Learning to sketch with shortcut cycle consistency. In: CVPR (2018)

    Google Scholar 

  31. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: ICML (2015)

    Google Scholar 

  32. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: NIPS (1999)

    Google Scholar 

  33. Yu, Q., Yang, Y., Liu, F., Song, Y.Z., Xiang, T., Hospedales, T.: Sketch-a-net: a deep neural network that beats humans. Int. J. Comput. Vis. 122, 411–425 (2017)

    Article  MathSciNet  Google Scholar 

  34. Yu, Q., Yang, Y., Song, Y.Z., Xiang, T., Hospedales, T.: Sketch-a-net that beats humans. In: BMVC (2015)

    Google Scholar 

  35. Zheng, W., Bo, P., Liu, Y., Wang, W.: Fast B-spline curve fitting by L-BFGS. Comput. Aided Geometr. Design 29(7), 448–462 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayan Das .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 775 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, A., Yang, Y., Hospedales, T., Xiang, T., Song, YZ. (2020). BézierSketch: A Generative Model for Scalable Vector Sketches. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12371. Springer, Cham. https://doi.org/10.1007/978-3-030-58574-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58574-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58573-0

  • Online ISBN: 978-3-030-58574-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics