[go: up one dir, main page]

Skip to main content

Two Stream Active Query Suggestion for Active Learning in Connectomics

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

For large-scale vision tasks in biomedical images, the labeled data is often limited to train effective deep models. Active learning is a common solution, where a query suggestion method selects representative unlabeled samples for annotation, and the new labels are used to improve the base model. However, most query suggestion models optimize their learnable parameters only on the limited labeled data and consequently become less effective for the more challenging unlabeled data. To tackle this, we propose a two-stream active query suggestion approach. In addition to the supervised feature extractor, we introduce an unsupervised one optimized on all raw images to capture diverse image features, which can later be improved by fine-tuning on new labels. As a use case, we build an end-to-end active learning framework with our query suggestion method for 3D synapse detection and mitochondria segmentation in connectomics. With the framework, we curate, to our best knowledge, the largest connectomics dataset with dense synapses and mitochondria annotation. On this new dataset, our method outperforms previous state-of-the-art methods by 3.1% for synapse and 3.8% for mitochondria in terms of region-of-interest proposal accuracy. We also apply our method to image classification, where it outperforms previous approaches on CIFAR-10 under the same limited annotation budget. The project page is https://zudi-lin.github.io/projects/#two_stream_active.

X. Chen, L. Kamentsky, A. Peleg, D. Haehn, T. Jones and T. Parag—Works were done at Harvard University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Architecture details are shown in Fig. S-1 in the supplementary document.

References

  1. Abramson, Y., Freund, Y.: Active learning for visual object detection (2006)

    Google Scholar 

  2. Becker, C., Ali, K., Knott, G., Fua, P.: Learning context cues for synapse segmentation. IEEE TMI 32, 1864–1877 (2013)

    Google Scholar 

  3. Belkin, M., Niyogi, P.: Using manifold stucture for partially labeled classification. In: NIPS (2003)

    Google Scholar 

  4. Bietti, A.: Active learning for object detection on satellite images. Technical report, Caltech (2012)

    Google Scholar 

  5. Buhmann, J., et al.: Synaptic partner prediction from point annotations in insect brains. arXiv preprint arXiv:1806.08205 (2018)

  6. Cheng, H.C., Varshney, A.: Volume segmentation using convolutional neural networks with limited training data. In: ICIP (2017)

    Google Scholar 

  7. Dorkenwald, S., et al.: Automated synaptic connectivity inference for volume electron microscopy. Nat. Methods 14(4), 435 (2017)

    Article  Google Scholar 

  8. Ducoffe, M., Precioso, F.: Adversarial active learning for deep networks: a margin based approach. In: ICML (2018)

    Google Scholar 

  9. Dutt Jain, S., Grauman, K.: Active image segmentation propagation. In: CVPR (2016)

    Google Scholar 

  10. Freytag, A., Rodner, E., Denzler, J.: Selecting influential examples: active learning with expected model output changes. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 562–577. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_37

    Chapter  Google Scholar 

  11. Funke, J., Saalfeld, S., Bock, D., Turaga, S., Perlman, E.: Circuit reconstruction from electron microscopy images (2016). https://cremi.org

  12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  14. Heinrich, L., Funke, J., Pape, C., Nunez-Iglesias, J., Saalfeld, S.: Synaptic cleft segmentation in non-isotropic volume electron microscopy of the complete Drosophila brain. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 317–325. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_36

    Chapter  Google Scholar 

  15. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: International Workshop on Similarity-Based Pattern Recognition (2015)

    Google Scholar 

  16. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  17. Huang, G.B., Plaza, S.: Identifying synapses using deep and wide multiscale recursive networks. arXiv preprint arXiv:1409.1789 (2014)

  18. Huang, G.B., Scheffer, L.K., Plaza, S.M.: Fully-automatic synapse prediction and validation on a large data set. arXiv preprint arXiv:1604.03075 (2016)

  19. Jagadeesh, V., Anderson, J., Jones, B., Marc, R., Fisher, S., Manjunath, B.: Synapse classification and localization in electron micrographs. Pattern Recogn. Lett. 43, 17–24 (2014)

    Article  Google Scholar 

  20. Kao, C.-C., Lee, T.-Y., Sen, P., Liu, M.-Y.: Localization-aware active learning for object detection. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 506–522. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_32

    Chapter  Google Scholar 

  21. Kasthuri, N., et al.: Saturated reconstruction of a volume of neocortex. Cell 162(3), 648–661 (2015)

    Article  Google Scholar 

  22. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. ICLR (2013)

    Google Scholar 

  23. Kreshuk, A., Funke, J., Cardona, A., Hamprecht, F.A.: Who is talking to whom: synaptic partner detection in anisotropic volumes of insect brain. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 661–668. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_81

    Chapter  Google Scholar 

  24. Kreshuk, A., Koethe, U., Pax, E., Bock, D.D., Hamprecht, F.A.: Automated detection of synapses in serial section transmission electron microscopy image stacks. PLoS One 9(2), e87351 (2014)

    Article  Google Scholar 

  25. Kreshuk, A., et al.: Automated detection and segmentation of synaptic contacts in nearly isotropic serial electron microscopy images. PLoS One 6(10), e24899 (2011)

    Article  Google Scholar 

  26. Lichtman, J.W., Sanes, J.R.: Ome sweet ome: what can the genome tell us about the connectome? Curr. Opin. Neurobiol. 18(3), 346–353 (2008)

    Article  Google Scholar 

  27. Lucchi, A., Li, Y., Fua, P.: Learning for structured prediction using approximate subgradient descent with working sets. In: CVPR (2013)

    Google Scholar 

  28. Lucchi, A., Li, Y., Smith, K., Fua, P.: Structured image segmentation using kernelized features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 400–413. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_29

    Chapter  Google Scholar 

  29. Lucchi, A., et al.: Learning structured models for segmentation of 2D and 3D imagery. IEEE TMI 34, 1096–1110 (2015)

    Google Scholar 

  30. Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. IEEE TMI 31, 474–486 (2012)

    Google Scholar 

  31. Morgan, J.L., Lichtman, J.W.: Why not connectomics? Nat. Methods 10(6), 494 (2013)

    Article  Google Scholar 

  32. Narasimha, R., Ouyang, H., Gray, A., McLaughlin, S.W., Subramaniam, S.: Automatic joint classification and segmentation of whole cell 3D images. Pattern Recogn. 42, 1067–1079 (2009)

    Article  Google Scholar 

  33. Oztel, I., Yolcu, G., Ersoy, I., White, T., Bunyak, F.: Mitochondria segmentation in electron microscopy volumes using deep convolutional neural network. In: Bioinformatics and Biomedicine (2017)

    Google Scholar 

  34. Parag, T., et al.: Detecting synapse location and connectivity by signed proximity estimation and pruning with deep nets. arXiv preprint arXiv:1807.02739 (2018)

  35. Parag, T., Ciresan, D.C., Giusti, A.: Efficient classifier training to minimize false merges in electron microscopy segmentation. In: ICCV (2015)

    Google Scholar 

  36. Perez, A.J., et al.: A workflow for the automatic segmentation of organelles in electron microscopy image stacks. Front. Neuroanat. 8, 126 (2014)

    Article  Google Scholar 

  37. Plaza, S.M., Parag, T., Huang, G.B., Olbris, D.J., Saunders, M.A., Rivlin, P.K.: Annotating synapses in large EM datasets. arXiv preprint arXiv:1409.1801 (2014)

  38. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  39. Roncal, W.G., et al.: VESICLE: volumetric evaluation of synaptic interfaces using computer vision at large scale. arXiv preprint arXiv:1403.3724 (2014)

  40. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  41. Roy, S., Namboodiri, V.P., Biswas, A.: Active learning with version spaces for object detection. arXiv preprint arXiv:1611.07285 (2016)

  42. Scheffer, T., Decomain, C., Wrobel, S.: Active hidden Markov models for information extraction. In: Hoffmann, F., Hand, D.J., Adams, N., Fisher, D., Guimaraes, G. (eds.) IDA 2001. LNCS, vol. 2189, pp. 309–318. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44816-0_31

    Chapter  Google Scholar 

  43. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: ICLR (2018)

    Google Scholar 

  44. Settles, B.: Active learning literature survey. Technical report, University of Wisconsin-Madison Department of Computer Sciences (2009)

    Google Scholar 

  45. Settles, B.: Active learning literature survey. 2010. Computer Sciences Technical Report (2014)

    Google Scholar 

  46. Seyedhosseini, M., Ellisman, M.H., Tasdizen, T.: Segmentation of mitochondria in electron microscopy images using algebraic curves. In: ISBI, pp. 860–863. IEEE (2013)

    Google Scholar 

  47. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS (2014)

    Google Scholar 

  48. Sivaraman, S., Trivedi, M.M.: Active learning for on-road vehicle detection: a comparative study. Mach. Vis. Appl. 25, 599–611 (2014)

    Article  Google Scholar 

  49. Staffler, B., Berning, M., Boergens, K.M., Gour, A., van der Smagt, P., Helmstaedter, M.: SynEM, automated synapse detection for connectomics. Elife (2017)

    Google Scholar 

  50. Vazquez-Reina, A., Gelbart, M., Huang, D., Lichtman, J., Miller, E., Pfister, H.: Segmentation fusion for connectomics. In: ICCV (2011)

    Google Scholar 

  51. Vijayanarasimhan, S., Grauman, K.: Large-scale live active learning: training object detectors with crawled data and crowds. IJCV 108, 97–114 (2014)

    Article  MathSciNet  Google Scholar 

  52. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE TCSVT 27, 2591–2600 (2017)

    Google Scholar 

  53. Yoo, D., Kweon, I.S.: Learning loss for active learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 93–102 (2019)

    Google Scholar 

  54. Yu, K., Bi, J., Tresp, V.: Active learning via transductive experimental design. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 1081–1088 (2006)

    Google Scholar 

  55. Zhang, Y., Lease, M., Wallace, B.C.: Active discriminative text representation learning. In: AAAI (2017)

    Google Scholar 

  56. Zheng, Z., et al.: A complete electron microscopy volume of the brain of adult drosophila melanogaster. Cell 174, 730–743 (2018)

    Article  Google Scholar 

  57. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using Gaussian fields and harmonic functions. In: ICML (2003)

    Google Scholar 

Download references

Acknowledgment

This work has been partially supported by NSF award IIS-1835231 and NIH award 5U54CA225088-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zudi Lin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4156 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Z. et al. (2020). Two Stream Active Query Suggestion for Active Learning in Connectomics. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58523-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58522-8

  • Online ISBN: 978-3-030-58523-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics