[go: up one dir, main page]

Skip to main content

File Forgery Detection Using a Weighted Rule-Based System

  • Conference paper
  • First Online:
Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2020)

Abstract

The society is becoming increasingly dependent on digital data sources. However, our trust on the sources and its contents is only ensured if we can also rely on robust methods that prevent fraudulent forgery. As digital forensic experts are continually dealing with the detection of forged data, new fraudulent approaches are emerging, making it difficult to use automated systems. This security breach is also a good challenge that motivates researchers to explore computational solutions to efficiently address the problem. This paper describes a weighted rule-based system for file forgery detection. The system was developed and validated in the several tasks of ImageCLEFsecurity 2019 track challenge, where promising results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://incoherency.co.uk/image-steganography/.

  2. 2.

    https://www.ssuiteoffice.com/software/ssuitepicselsecurity.htm.

  3. 3.

    http://steghide.sourceforge.net/.

References

  1. Ahmed, I., Lhee, K., Shin, H., Hong, M.P.: On improving the accuracy and performance of content-based file type identification. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 44–59. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02620-1_4

    Chapter  Google Scholar 

  2. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Comput. 9(7), 1545–1588 (1997). https://doi.org/10.1162/neco.1997.9.7.1545

    Article  Google Scholar 

  3. Attaby, A.A., Ahmed, M.F.M., Alsammak, A.K.: Data hiding inside JPEG images with high resistance to steganalysis using a novel technique: DCT-M3. Ain Shams Eng. J. (2017). https://doi.org/10.1016/j.asej.2017.02.003

    Article  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  5. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 161–168. ACM (2006). https://doi.org/10.1145/1143844.1143865

  6. Chutani, S., Goyal, A.: A review of forensic approaches to digital image Steganalysis. Multimed. Tools Appl. 78(13), 18169–18204 (2019). https://doi.org/10.1007/s11042-019-7217-0

    Article  Google Scholar 

  7. Cutler, A., Cutler, D.R., Stevens, J.R.: Random forests. In: Zhang, C., Ma, Y. (eds.) Ensemble Machine Learning, pp. 157–175. Springer, Boston (2012). https://doi.org/10.1007/978-1-4419-9326-7_5

    Chapter  Google Scholar 

  8. Evensen, J.D., Lindahl, S., Goodwin, M.: File-type detection using naïve Bayes and n-gram analysis. In: Norwegian Information Security Conference, NISK, vol. 7 (2014)

    Google Scholar 

  9. Gloe, T.: Forensic analysis of ordered data structures on the example of JPEG files. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 139–144. IEEE (2012). https://doi.org/10.1109/WIFS.2012.6412639

  10. Gopal, S., Yang, Y., Salomatin, K., Carbonell, J.: Statistical learning for file-type identification. In: 2011 10th International Conference on Machine Learning and Applications and Workshops, vol. 1, pp. 68–73. IEEE (2011). https://doi.org/10.1109/ICMLA.2011.135

  11. Ionescu, B., et al.: ImageCLEF 2019: multimedia retrieval in medicine, lifelogging, security and nature. In: Crestani, F., et al. (eds.) CLEF 2019. LNCS, vol. 11696, pp. 358–386. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28577-7_28

    Chapter  Google Scholar 

  12. Ishibuchi, H., Nakashima, T.: Effect of rule weights in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 9(4), 506–515 (2001). https://doi.org/10.1109/91.940964

    Article  Google Scholar 

  13. Karampidis, K., Kavallieratou, E., Papadourakis, G.: A review of image steganalysis techniques for digital forensics. J. Inf. Secur. Appl. 40, 217–235 (2018). https://doi.org/10.1016/j.jisa.2018.04.005

    Article  Google Scholar 

  14. Karampidis, K., Papadourakis, G.: File type identification for digital forensics. In: Krogstie, J., Mouratidis, H., Su, J. (eds.) CAiSE 2016. LNBIP, vol. 249, pp. 266–274. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39564-7_25

    Chapter  Google Scholar 

  15. Karampidis, K., Vasillopoulos, N., Cuevas Rodríguez, C., del Blanco, C.R., Kavallieratou, E., Garcia, N.: Overview of the ImageCLEFsecurity 2019: fileforgery detection tasks. In: CLEF2019 Working Notes. CEUR Workshop Proceedings, 09–12 September 2019, vol. 2381. CEUR-WS.org, Lugano (2019)

    Google Scholar 

  16. Karresand, M., Shahmehri, N.: File type identification of data fragments by their binary structure. In: Proceedings of the IEEE Information Assurance Workshop, pp. 140–147 (2006). https://doi.org/10.1109/IAW.2006.1652088

  17. Khalid, S.K.A., Deris, M.M., Mohamad, K.M.: A steganographic technique for highly compressed JPEG images. In: The Second International Conference on Informatics Engineering & Information Science (ICIEIS 2013), pp. 107–118 (2013)

    Google Scholar 

  18. Kuhn, M., et al.: Building predictive models in R using the caret package. J. Stat. Softw. 28(5), 1–26 (2008)

    Article  Google Scholar 

  19. Kumari, M., Khare, A., Khare, P.: JPEG compression steganography & crypography using image-adaptation technique. J. Adv. Inf. Technol. 1(3), 141–145 (2010). https://doi.org/10.4304/jait.1.3.141-145

    Article  Google Scholar 

  20. Liu, H., Gegov, A., Cocea, M.: Rule-based systems: a granular computing perspective. Granular Comput. 1(4), 259–274 (2016). https://doi.org/10.1007/s41066-016-0021-6

    Article  Google Scholar 

  21. McDaniel, M., Heydari, M.H.: Content based file type detection algorithms. In: 2003 Proceedings of the 36th Annual Hawaii International Conference on System Sciences, pp. 10–pp. IEEE (2003). https://doi.org/10.1109/HICSS.2003.1174905

  22. Reddy, V.L., Subramanyam, A., Reddy, P.C.: Steganpeg steganography + JPEG. In: 2011 International Conference on Ubiquitous Computing and Multimedia Applications, pp. 42–48. IEEE (2011). https://doi.org/10.1109/UCMA.2011.17

  23. Singh, M.T.S.A., Sharma, A.: A survey on various techniques of image data cryptography techniques and features. Int. J. Sci. Res. Eng. Trends 5, 192–195 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the projects NETDIAMOND (POCI-01-0145-FEDER-016385) and SOCA (CENTRO-01-0145-FEDER-000010), co-funded by Centro 2020 program, Portugal 2020, European Union. JRA is funded by the National Science Foundation (FCT), under the grant SFRH/BD/147837/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Rafael Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almeida, J.R., Fajarda, O., Oliveira, J.L. (2020). File Forgery Detection Using a Weighted Rule-Based System. In: Arampatzis, A., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2020. Lecture Notes in Computer Science(), vol 12260. Springer, Cham. https://doi.org/10.1007/978-3-030-58219-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58219-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58218-0

  • Online ISBN: 978-3-030-58219-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics