Abstract
The society is becoming increasingly dependent on digital data sources. However, our trust on the sources and its contents is only ensured if we can also rely on robust methods that prevent fraudulent forgery. As digital forensic experts are continually dealing with the detection of forged data, new fraudulent approaches are emerging, making it difficult to use automated systems. This security breach is also a good challenge that motivates researchers to explore computational solutions to efficiently address the problem. This paper describes a weighted rule-based system for file forgery detection. The system was developed and validated in the several tasks of ImageCLEFsecurity 2019 track challenge, where promising results were obtained.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, I., Lhee, K., Shin, H., Hong, M.P.: On improving the accuracy and performance of content-based file type identification. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 44–59. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02620-1_4
Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Comput. 9(7), 1545–1588 (1997). https://doi.org/10.1162/neco.1997.9.7.1545
Attaby, A.A., Ahmed, M.F.M., Alsammak, A.K.: Data hiding inside JPEG images with high resistance to steganalysis using a novel technique: DCT-M3. Ain Shams Eng. J. (2017). https://doi.org/10.1016/j.asej.2017.02.003
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 161–168. ACM (2006). https://doi.org/10.1145/1143844.1143865
Chutani, S., Goyal, A.: A review of forensic approaches to digital image Steganalysis. Multimed. Tools Appl. 78(13), 18169–18204 (2019). https://doi.org/10.1007/s11042-019-7217-0
Cutler, A., Cutler, D.R., Stevens, J.R.: Random forests. In: Zhang, C., Ma, Y. (eds.) Ensemble Machine Learning, pp. 157–175. Springer, Boston (2012). https://doi.org/10.1007/978-1-4419-9326-7_5
Evensen, J.D., Lindahl, S., Goodwin, M.: File-type detection using naïve Bayes and n-gram analysis. In: Norwegian Information Security Conference, NISK, vol. 7 (2014)
Gloe, T.: Forensic analysis of ordered data structures on the example of JPEG files. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 139–144. IEEE (2012). https://doi.org/10.1109/WIFS.2012.6412639
Gopal, S., Yang, Y., Salomatin, K., Carbonell, J.: Statistical learning for file-type identification. In: 2011 10th International Conference on Machine Learning and Applications and Workshops, vol. 1, pp. 68–73. IEEE (2011). https://doi.org/10.1109/ICMLA.2011.135
Ionescu, B., et al.: ImageCLEF 2019: multimedia retrieval in medicine, lifelogging, security and nature. In: Crestani, F., et al. (eds.) CLEF 2019. LNCS, vol. 11696, pp. 358–386. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28577-7_28
Ishibuchi, H., Nakashima, T.: Effect of rule weights in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 9(4), 506–515 (2001). https://doi.org/10.1109/91.940964
Karampidis, K., Kavallieratou, E., Papadourakis, G.: A review of image steganalysis techniques for digital forensics. J. Inf. Secur. Appl. 40, 217–235 (2018). https://doi.org/10.1016/j.jisa.2018.04.005
Karampidis, K., Papadourakis, G.: File type identification for digital forensics. In: Krogstie, J., Mouratidis, H., Su, J. (eds.) CAiSE 2016. LNBIP, vol. 249, pp. 266–274. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39564-7_25
Karampidis, K., Vasillopoulos, N., Cuevas Rodríguez, C., del Blanco, C.R., Kavallieratou, E., Garcia, N.: Overview of the ImageCLEFsecurity 2019: fileforgery detection tasks. In: CLEF2019 Working Notes. CEUR Workshop Proceedings, 09–12 September 2019, vol. 2381. CEUR-WS.org, Lugano (2019)
Karresand, M., Shahmehri, N.: File type identification of data fragments by their binary structure. In: Proceedings of the IEEE Information Assurance Workshop, pp. 140–147 (2006). https://doi.org/10.1109/IAW.2006.1652088
Khalid, S.K.A., Deris, M.M., Mohamad, K.M.: A steganographic technique for highly compressed JPEG images. In: The Second International Conference on Informatics Engineering & Information Science (ICIEIS 2013), pp. 107–118 (2013)
Kuhn, M., et al.: Building predictive models in R using the caret package. J. Stat. Softw. 28(5), 1–26 (2008)
Kumari, M., Khare, A., Khare, P.: JPEG compression steganography & crypography using image-adaptation technique. J. Adv. Inf. Technol. 1(3), 141–145 (2010). https://doi.org/10.4304/jait.1.3.141-145
Liu, H., Gegov, A., Cocea, M.: Rule-based systems: a granular computing perspective. Granular Comput. 1(4), 259–274 (2016). https://doi.org/10.1007/s41066-016-0021-6
McDaniel, M., Heydari, M.H.: Content based file type detection algorithms. In: 2003 Proceedings of the 36th Annual Hawaii International Conference on System Sciences, pp. 10–pp. IEEE (2003). https://doi.org/10.1109/HICSS.2003.1174905
Reddy, V.L., Subramanyam, A., Reddy, P.C.: Steganpeg steganography + JPEG. In: 2011 International Conference on Ubiquitous Computing and Multimedia Applications, pp. 42–48. IEEE (2011). https://doi.org/10.1109/UCMA.2011.17
Singh, M.T.S.A., Sharma, A.: A survey on various techniques of image data cryptography techniques and features. Int. J. Sci. Res. Eng. Trends 5, 192–195 (2019)
Acknowledgements
This work was supported by the projects NETDIAMOND (POCI-01-0145-FEDER-016385) and SOCA (CENTRO-01-0145-FEDER-000010), co-funded by Centro 2020 program, Portugal 2020, European Union. JRA is funded by the National Science Foundation (FCT), under the grant SFRH/BD/147837/2019.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Almeida, J.R., Fajarda, O., Oliveira, J.L. (2020). File Forgery Detection Using a Weighted Rule-Based System. In: Arampatzis, A., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2020. Lecture Notes in Computer Science(), vol 12260. Springer, Cham. https://doi.org/10.1007/978-3-030-58219-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-58219-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58218-0
Online ISBN: 978-3-030-58219-7
eBook Packages: Computer ScienceComputer Science (R0)