[go: up one dir, main page]

Skip to main content

Computing Function of Large Matrices by a Preconditioned Rational Krylov Method

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2019

Abstract

Rational Krylov methods are a powerful alternative for computing the product of a function of a large matrix times a given vector. However, the creation of the underlying rational subspaces requires solving sequences of large linear systems, a delicate task that can require intensive computational resources and should be monitored to avoid the creation of subspace different to those required whenever, e.g., the underlying matrices are ill-conditioned. We propose the use of robust preconditioned iterative techniques to speedup the underlying process. We also discuss briefly how the inexact solution of these linear systems can affect the computed subspace. A preliminary test approximating a fractional power of the Laplacian matrix is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aceto, L., Bertaccini, D., Durastante, F., Novati, P.: Rational Krylov methods for functions of matrices with applications to fractional partial differential equations. J. Comput. Phys. 396, 470–482 (2019)

    Article  MathSciNet  Google Scholar 

  2. Aceto, L., Novati, P.: Rational approximations to fractional powers of self-adjoint positive operators. Numer. Math. 143(1), 1–16 (2019)

    Article  MathSciNet  Google Scholar 

  3. Axelsson, O.: Iterative solution methods. Cambridge University press (1996)

    Google Scholar 

  4. Bellavia, S., Bertaccini, D., Morini, B.: Nonsymmetric preconditioner updates in Newton-Krylov methods for nonlinear systems. SIAM J. Sci. Comput. 33(5), 2595–2619 (2011)

    Article  MathSciNet  Google Scholar 

  5. Benzi, M., Bertaccini, D.: Approximate inverse preconditioning for shifted linear systems. BIT 43(2), 231–244 (2003)

    Article  MathSciNet  Google Scholar 

  6. Berljafa, M., Güttel, S.: The RKFIT algorithm for nonlinear rational approximation. SIAM J. Sci. Comput. 39(5), A2049–A2071 (2017). https://doi.org/10.1137/15M1025426

    Article  MathSciNet  Google Scholar 

  7. Bertaccini, D.: Efficient preconditioning for sequences of parametric complex symmetric linear systems. Electron. Trans. Numer. Anal. 18, 49–64 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Bertaccini, D., Durastante, F.: Interpolating preconditioners for the solution of sequence of linear systems. Comput. Math. Appl. 72(4), 1118–1130 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bertaccini, D., Durastante, F.: Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications. Chapman & Hall/CRC Monographs and Research Notes in Mathematics. CRC Press (2018)

    Book  Google Scholar 

  10. Bertaccini, D., Filippone, S.: Sparse approximate inverse preconditioners on high performance GPU platforms. Computer e Mathematics with Applications 71, 693–711 (2016)

    Article  MathSciNet  Google Scholar 

  11. Güttel, S.: Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection. GAMM-Mitt. 36(1), 8–31 (2013)

    Article  MathSciNet  Google Scholar 

  12. Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation. I. Fract. Calc. Appl. Anal. 8(3), 323–341 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation. II. With nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9(4), 333–349 (2006)

    MATH  Google Scholar 

  14. Kolotina, L., Yeremin, A.: Factorized sparse approximate inverse precon- ditioning i: Theory. SIAM J. Matrix Anal. Appl. 14(1), 45–58 (1993)

    Article  MathSciNet  Google Scholar 

  15. Lehoucq, R.B., Meerbergen, K.: Using generalized Cayley transformations within an inexact rational Krylov sequence method. SIAM J. Matrix Anal. Appl. 20, 131–148 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We wish to thank two anonymous referees for their comments which have improved the readability of the paper.

This project was partially supported by the Tor Vergata University project “MISSION: SUSTAINABILITY” “NUMnoSIDS”, CUP E86C18000530005, and by the INDAM-GNCS 2019 project “Tecniche innovative e parallele per sistemi lineari e non lineari di grandi dimensioni, funzioni ed equazioni matriciali ed applicazioni”. D. Bertaccini gratefully acknowledges the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Durastante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Cite this paper

Bertaccini, D., Durastante, F. (2021). Computing Function of Large Matrices by a Preconditioned Rational Krylov Method. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_33

Download citation

Publish with us

Policies and ethics