Abstract
Rational Krylov methods are a powerful alternative for computing the product of a function of a large matrix times a given vector. However, the creation of the underlying rational subspaces requires solving sequences of large linear systems, a delicate task that can require intensive computational resources and should be monitored to avoid the creation of subspace different to those required whenever, e.g., the underlying matrices are ill-conditioned. We propose the use of robust preconditioned iterative techniques to speedup the underlying process. We also discuss briefly how the inexact solution of these linear systems can affect the computed subspace. A preliminary test approximating a fractional power of the Laplacian matrix is included.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aceto, L., Bertaccini, D., Durastante, F., Novati, P.: Rational Krylov methods for functions of matrices with applications to fractional partial differential equations. J. Comput. Phys. 396, 470–482 (2019)
Aceto, L., Novati, P.: Rational approximations to fractional powers of self-adjoint positive operators. Numer. Math. 143(1), 1–16 (2019)
Axelsson, O.: Iterative solution methods. Cambridge University press (1996)
Bellavia, S., Bertaccini, D., Morini, B.: Nonsymmetric preconditioner updates in Newton-Krylov methods for nonlinear systems. SIAM J. Sci. Comput. 33(5), 2595–2619 (2011)
Benzi, M., Bertaccini, D.: Approximate inverse preconditioning for shifted linear systems. BIT 43(2), 231–244 (2003)
Berljafa, M., Güttel, S.: The RKFIT algorithm for nonlinear rational approximation. SIAM J. Sci. Comput. 39(5), A2049–A2071 (2017). https://doi.org/10.1137/15M1025426
Bertaccini, D.: Efficient preconditioning for sequences of parametric complex symmetric linear systems. Electron. Trans. Numer. Anal. 18, 49–64 (2004)
Bertaccini, D., Durastante, F.: Interpolating preconditioners for the solution of sequence of linear systems. Comput. Math. Appl. 72(4), 1118–1130 (2016)
Bertaccini, D., Durastante, F.: Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications. Chapman & Hall/CRC Monographs and Research Notes in Mathematics. CRC Press (2018)
Bertaccini, D., Filippone, S.: Sparse approximate inverse preconditioners on high performance GPU platforms. Computer e Mathematics with Applications 71, 693–711 (2016)
Güttel, S.: Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection. GAMM-Mitt. 36(1), 8–31 (2013)
Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation. I. Fract. Calc. Appl. Anal. 8(3), 323–341 (2005)
Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation. II. With nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9(4), 333–349 (2006)
Kolotina, L., Yeremin, A.: Factorized sparse approximate inverse precon- ditioning i: Theory. SIAM J. Matrix Anal. Appl. 14(1), 45–58 (1993)
Lehoucq, R.B., Meerbergen, K.: Using generalized Cayley transformations within an inexact rational Krylov sequence method. SIAM J. Matrix Anal. Appl. 20, 131–148 (1998)
Acknowledgements
We wish to thank two anonymous referees for their comments which have improved the readability of the paper.
This project was partially supported by the Tor Vergata University project “MISSION: SUSTAINABILITY” “NUMnoSIDS”, CUP E86C18000530005, and by the INDAM-GNCS 2019 project “Tecniche innovative e parallele per sistemi lineari e non lineari di grandi dimensioni, funzioni ed equazioni matriciali ed applicazioni”. D. Bertaccini gratefully acknowledges the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Bertaccini, D., Durastante, F. (2021). Computing Function of Large Matrices by a Preconditioned Rational Krylov Method. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-55874-1_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55873-4
Online ISBN: 978-3-030-55874-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)