[go: up one dir, main page]

Skip to main content

Graph Cuts Based Tomography Enhanced by Shape Orientation

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12148))

Included in the following conference series:

Abstract

The topic of this paper includes graph cuts based tomography reconstruction methods in binary and multi-gray level cases. A energy-minimization based reconstruction method for binary tomography is introduced. This approach combines the graph cuts and a gradient based method, and applies a shape orientation as an a priori information. The new method is capable for reconstructions in cases of limited projection view availability. Results of experimental evaluation of the considered graph cuts type reconstruction methods for both binary and multi level tomography are presented .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Batenburg, K.J., Sijbers, J.: DART: a fast heuristic algebraic reconstruction algorithm for discrete tomography. In: Proceedings of International Conference on Image Processing (ICIP), pp. 133–136 (2007)

    Google Scholar 

  2. Birchfield, S., Tomasi, C.: Multiway cut for stereo and motion with slanted surfaces. In: Proceedings of the International Conference on Computer Vision, pp. 489–495 (1999)

    Google Scholar 

  3. Birgin, E.G., Martínez, J.M., Raydan, M.: Algorithm: 813: SPG - software for convex-constrained optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)

    Article  Google Scholar 

  4. Birgin, E., Martínez, J.: A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients. Computing 15, 49–60 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: Proceedings of the International Conference on Computer Vision, pp. 105–112 (2001)

    Google Scholar 

  6. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Proceedings of the International Conference on Computer Vision, pp. 26–33 (2003)

    Google Scholar 

  7. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. PAMI 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  8. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, pp. 648–655 (1998)

    Google Scholar 

  9. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. PAMI 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  10. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 96(1), pp. 1–27 (2010)

    Google Scholar 

  11. Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser, Boston (1999)

    Book  Google Scholar 

  12. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications. Birkhäuser, Boston (2006)

    Google Scholar 

  13. Kim, J., Zabih, R.: Automatic Segmentation of Contrast- Enhanced Image Sequences. In: Proceedings of the International Conference on Computer Vision, pp. 502–509 (2003)

    Google Scholar 

  14. Kolmogorov, V., Zabih, R.: Visual correspondence with occlusions using graph cuts. In: Proceedings of the International Conference on Computer Vision, pp. 508–515 (2001)

    Google Scholar 

  15. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. PAMI 26(2), 147–159 (2004)

    Article  Google Scholar 

  16. Kwatra, V., Schoedl, A., Essa, I., Turk, G., Bobick, A.: Graphcut Textures: Image and Video Synthesis Using Graph Cuts. In: Proc. SIGGRAPH 2003. pp. 277–286. ACM Trans. Graphics (2003)

    Google Scholar 

  17. Lukić, T.: Discrete tomography reconstruction based on the multi-well potential. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 335–345. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21073-0_30

    Chapter  Google Scholar 

  18. Lukić, T., Balázs, P.: Binary tomography reconstruction based on shape orientation. Pattern Recogn. Lett. 79, 18–24 (2016)

    Article  Google Scholar 

  19. Lukić, T., Lukity, A.: A spectral projected gradient optimization for binary tomography. In: Rudas, I.J., Fodor, J., Kacprzyk, J. (eds.) Computational Intelligence in Engineering. SCI, vol. 313, pp. 263–272. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15220-7_21

    Chapter  Google Scholar 

  20. Lukić, T., Marčeta, M.: Gradient and graph cuts based method for multi-level discrete tomography. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 322–333. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7_25

    Chapter  Google Scholar 

  21. Lukić, T., Nagy, B.: Deterministic discrete tomography reconstruction method for images on triangular grid. Pattern Recogn. Lett. 49, 11–16 (2014)

    Article  Google Scholar 

  22. Nagy, B., Lukić, T.: Dense projection tomography on the triangular tiling. Fundam. Inform. 145, 125–141 (2016)

    Article  MathSciNet  Google Scholar 

  23. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Thomson-Engineering, Toranto (2007)

    Google Scholar 

  24. Varga, L., Balázs, P., Nagy, A.: An energy minimization reconstruction algorithm for multivalued discrete tomography. In: Proceedings of 3rd International Symposium on Computational Modeling of Objects Represented in Images, pp. 179–185. Taylor & Francis, Rome (2012)

    Google Scholar 

  25. Zisler, M., Petra, S., Schnörr, C., Schnörr, C.: Discrete tomography by continuous multilabeling subject to projection constraints. In: Rosenhahn, B., Andres, B. (eds.) GCPR 2016. LNCS, vol. 9796, pp. 261–272. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45886-1_21

    Chapter  Google Scholar 

  26. Žunić, J., Rosin, P.L., Kopanja, L.: On the orientability of shapes. IEEE Trans. Image Process. 15, 3478–3487 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

Authors acknowledge the Ministry of Education and Sciences of the R. of Serbia for support via projects OI-174008 and III-44006. T. Lukić acknowledges support received from the Hungarian Academy of Sciences via DOMUS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Marčeta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marčeta, M., Lukić, T. (2020). Graph Cuts Based Tomography Enhanced by Shape Orientation. In: Lukić, T., Barneva, R., Brimkov, V., Čomić, L., Sladoje, N. (eds) Combinatorial Image Analysis. IWCIA 2020. Lecture Notes in Computer Science(), vol 12148. Springer, Cham. https://doi.org/10.1007/978-3-030-51002-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51002-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51001-5

  • Online ISBN: 978-3-030-51002-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics