Abstract
The topic of this paper includes graph cuts based tomography reconstruction methods in binary and multi-gray level cases. A energy-minimization based reconstruction method for binary tomography is introduced. This approach combines the graph cuts and a gradient based method, and applies a shape orientation as an a priori information. The new method is capable for reconstructions in cases of limited projection view availability. Results of experimental evaluation of the considered graph cuts type reconstruction methods for both binary and multi level tomography are presented .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Batenburg, K.J., Sijbers, J.: DART: a fast heuristic algebraic reconstruction algorithm for discrete tomography. In: Proceedings of International Conference on Image Processing (ICIP), pp. 133–136 (2007)
Birchfield, S., Tomasi, C.: Multiway cut for stereo and motion with slanted surfaces. In: Proceedings of the International Conference on Computer Vision, pp. 489–495 (1999)
Birgin, E.G., Martínez, J.M., Raydan, M.: Algorithm: 813: SPG - software for convex-constrained optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)
Birgin, E., Martínez, J.: A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients. Computing 15, 49–60 (2001)
Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: Proceedings of the International Conference on Computer Vision, pp. 105–112 (2001)
Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Proceedings of the International Conference on Computer Vision, pp. 26–33 (2003)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. PAMI 26(9), 1124–1137 (2004)
Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, pp. 648–655 (1998)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. PAMI 23(11), 1222–1239 (2001)
Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 96(1), pp. 1–27 (2010)
Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser, Boston (1999)
Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications. Birkhäuser, Boston (2006)
Kim, J., Zabih, R.: Automatic Segmentation of Contrast- Enhanced Image Sequences. In: Proceedings of the International Conference on Computer Vision, pp. 502–509 (2003)
Kolmogorov, V., Zabih, R.: Visual correspondence with occlusions using graph cuts. In: Proceedings of the International Conference on Computer Vision, pp. 508–515 (2001)
Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. PAMI 26(2), 147–159 (2004)
Kwatra, V., Schoedl, A., Essa, I., Turk, G., Bobick, A.: Graphcut Textures: Image and Video Synthesis Using Graph Cuts. In: Proc. SIGGRAPH 2003. pp. 277–286. ACM Trans. Graphics (2003)
Lukić, T.: Discrete tomography reconstruction based on the multi-well potential. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 335–345. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21073-0_30
Lukić, T., Balázs, P.: Binary tomography reconstruction based on shape orientation. Pattern Recogn. Lett. 79, 18–24 (2016)
Lukić, T., Lukity, A.: A spectral projected gradient optimization for binary tomography. In: Rudas, I.J., Fodor, J., Kacprzyk, J. (eds.) Computational Intelligence in Engineering. SCI, vol. 313, pp. 263–272. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15220-7_21
Lukić, T., Marčeta, M.: Gradient and graph cuts based method for multi-level discrete tomography. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 322–333. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7_25
Lukić, T., Nagy, B.: Deterministic discrete tomography reconstruction method for images on triangular grid. Pattern Recogn. Lett. 49, 11–16 (2014)
Nagy, B., Lukić, T.: Dense projection tomography on the triangular tiling. Fundam. Inform. 145, 125–141 (2016)
Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Thomson-Engineering, Toranto (2007)
Varga, L., Balázs, P., Nagy, A.: An energy minimization reconstruction algorithm for multivalued discrete tomography. In: Proceedings of 3rd International Symposium on Computational Modeling of Objects Represented in Images, pp. 179–185. Taylor & Francis, Rome (2012)
Zisler, M., Petra, S., Schnörr, C., Schnörr, C.: Discrete tomography by continuous multilabeling subject to projection constraints. In: Rosenhahn, B., Andres, B. (eds.) GCPR 2016. LNCS, vol. 9796, pp. 261–272. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45886-1_21
Žunić, J., Rosin, P.L., Kopanja, L.: On the orientability of shapes. IEEE Trans. Image Process. 15, 3478–3487 (2006)
Acknowledgement
Authors acknowledge the Ministry of Education and Sciences of the R. of Serbia for support via projects OI-174008 and III-44006. T. Lukić acknowledges support received from the Hungarian Academy of Sciences via DOMUS project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Marčeta, M., Lukić, T. (2020). Graph Cuts Based Tomography Enhanced by Shape Orientation. In: Lukić, T., Barneva, R., Brimkov, V., Čomić, L., Sladoje, N. (eds) Combinatorial Image Analysis. IWCIA 2020. Lecture Notes in Computer Science(), vol 12148. Springer, Cham. https://doi.org/10.1007/978-3-030-51002-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-51002-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-51001-5
Online ISBN: 978-3-030-51002-2
eBook Packages: Computer ScienceComputer Science (R0)