Abstract
Sexual dimorphism in the human retina has recently been connected to gonadal hormones. In the study herein presented, texture analysis was applied to computed mean value fundus (MVF) images from optical coherence tomography data of female and male healthy adult controls. Two separate age-group analyses that excluded the probable perimenopause period of the women in the present study were performed, using a modified MVF image computation method that further highlights texture differences present in the retina. While distinct texture characteristics were found between premenopausal females and age-matched males, these differences almost disappeared in the older groups (postmenopausal women vs age-matched men), suggesting that sex-related texture differences in the retina can be correlated to the hormonal changes that women go through during the menopausal transition. These findings suggest that texture-based metrics may be used as biomarkers of physiology and pathophysiology of the retina and the central nervous system.
This study was supported by The Portuguese Foundation for Science and Technology (PEst-UID/NEU/04539/2019 and UID/04950/2017), by FEDER-COMPETE (POCI-01-0145-FEDER-007440 and POCI01-0145-FEDER-016428), and by Centro 2020 FEDER-COMPETE (BIGDATIMAGE, CENTRO-01-0145-FEDER-000016).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abràmoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 3, 169–208 (2010). https://doi.org/10.1109/RBME.2010.2084567
Adhi, M., Aziz, S., Muhammad, K., Adhi, M.I.: Macular thickness by age and gender in healthy eyes using spectral domain optical coherence tomography. PLoS ONE 7(5), e37638 (2012). https://doi.org/10.1371/journal.pone.0037638
Anantrasirichai, N., Achim, A., Morgan, J.E., Erchova, I., Nicholson, L.: SVM-based texture classification in optical coherence tomography. In: IEEE 10th International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1332–1335 (2013). https://doi.org/10.1109/ISBI.2013.6556778
Bromberger, J.T., Matthews, K.A., Kuller, L.H., Wing, R.R., Meilahn, E.N., Plantinga, P.: Prospective study of the determinants of age at menopause. Am. J. Epidemiol. 145(2), 124–133 (1997). https://doi.org/10.1093/oxfordjournals.aje.a009083
Celik, T., Tjahjadi, T.: Multiscale texture classification using dual-tree complex wavelet transform. Pattern Recogn. Lett. 30, 331–339 (2009). https://doi.org/10.1016/j.patrec.2008.10.006
Chan, A., Duker, J.S., Ko, T.H., Fujimoto, J.G., Schuman, J.S.: Normal macular thickness measurements in healthy eyes using stratus optical coherence tomography. Arch. Ophthalmol. 124(2), 193–198 (2006). https://doi.org/10.1001/archopht.124.2.193
Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of grey level quantization. Canadian J. Remote Sens. 28(1), 45–62 (2002). https://doi.org/10.5589/m02-004
Conners, R.W., Trivedi, M.M., Harlow, C.A.: Segmentation of a high-resolution urban scene using texture operators (Sunnyvale, California). Comput. Vis. Graph. Image Process. 25(3), 273–310 (1984). https://doi.org/10.1016/0734-189x(84)90197-x
Çubuk, M., Kasım, B., Koçluk, Y., Sukgen, E.A.: Effects of age and gender on macular thickness in healthy subjects using spectral optical coherence tomography/scanning laser ophthalmoscopy. Int. Ophthalmol. 38(1), 127–131 (2017). https://doi.org/10.1007/s10792-016-0432-z
Ferreira, H., et al.: Characterization of the retinal changes of the 3xTg-AD mouse model of Alzheimer’s disease. In: Henriques, J. (ed.) MEDICON 2019, IFMBE. vol. 76, pp. 1816–1821 (2020). https://doi.org/10.1007/978-3-030-31635-8
Garvin, M.K., Abràmoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography Images. IEEE Trans. Med. Imag. 28, 1436–1447 (2009). https://doi.org/10.1109/TMI.2009.2016958
Gold, E.B.: The timing of the age at which natural menopause occurs. Obstetr. Gynecol. Clin. North Am. 38(3), 425–440 (2011). https://doi.org/10.1016/j.ogc.2011.05.002
Guedes, V., et al.: Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmol. 110(1), 177–189 (2003). https://doi.org/10.1016/s0161-6420(02)01564-6
Guimaraes, P., et al.: Ocular fundus reference images from optical coherence tomography. Comput. Med. Imag. Graph. 38, 381–389 (2014). https://doi.org/10.1016/j.compmedimag.2014.02.003
Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979). https://doi.org/10.1109/PROC.1979.11328
Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE Trans. Syst. Man Cybern. SMC–3, 610–621 (1973). https://doi.org/10.1109/TSMC.1973.4309314
Kashani, A.H., et al.: Retinal thickness analysis by race, gender, and age using stratus OCT. Am. J. Ophthalmol. 149, 496–502 (2010). https://doi.org/10.1016/j.ajo.2009.09.025
Kassner, A., Thornhill, R.E.: Texture analysis: a review of neurologic MR imaging applications. Am. J. Neuroradiol. 31, 809–816 (2010). https://doi.org/10.3174/ajnr.A2061
Kelty, P.J., Payne, J.F., Trivedi, R.H., Kelty, J., Bowie, E.M., Burger, B.M.: Macular thickness assessment in healthy eyes based on ethnicity using stratus OCT optical coherence tomography. Investigative Ophthalmol. Vis. Sci. 49(6), 2668–2672 (2008). https://doi.org/10.1167/iovs.07-1000
Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumetric images - a graph-theoretic approach. IEEE Trans. Pattern Anal. Mach. Intell. 28, 119–134 (2006). https://doi.org/10.1109/TPAMI.2006.19
London, A., Benhar, I., Schwartz, M.: The retina as a window to the brain - from eye research to CNS disorders. Nat. Rev. Neurol. (2012). https://doi.org/10.1038/nrneurol.2012.227
Nunes, A., Ambrósio, A.F., Castelo-Branco, M., Bernardes, R.: Texture biomarkers of Alzheimer’s disease and disease progression in the mouse retina. In: 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering, pp. 41–46 (2018). https://doi.org/10.1109/BIBE.2018.00016
Nunes, A., Serranho, P., Quental, H., Ambrosio, A.F., Castelo-Branco, M., Bernardes, R.: Sexual dimorphism of the adult human retina assessed by optical coherence tomography. In: Henriques, J. (ed.) MEDICON 2019, IFMBE. vol. 76, pp. 1830–1834 (2020). https://doi.org/10.1007/978-3-030-31635-8
Nunes, A., et al.: Textural information from the retinal nerve fibre layer in multiple sclerosis. In: 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG) (2019). https://doi.org/10.1109/ENBENG.2019.8692454
Nunes, A., et al.: Retinal texture biomarkers may help to discriminate between Alzheimer’s, Parkinson’s, and healthy controls. PLoS ONE 14(6), e0218826 (2019). https://doi.org/10.1371/journal.pone.0218826
Nuzzi, R., Scalabrin, S., Becco, A., Panzica, G.: Gonadal hormones and retinal disorders: a review. Front. Endocrinol. 9, 66 (2018). https://doi.org/10.3389/fendo.2018.00066
Ooto, S., et al.: Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Investigative Ophthalmol. Vis. Sci. 52, 8769–8779 (2011). https://doi.org/10.1167/iovs.11-8388
Ratnakumar, A., Zimmerman, S.E., Jordan, B.A., Mar, J.C.: Estrogen activates Alzheimer’s disease genes. Alzheimer’s & Dementia: Translat. Res. Clin. Intervent. 5, 906–917 (2019). https://doi.org/10.1016/j.trci.2019.09.004
Santoro, N.: Perimenopause: from research to practice. J. Women’s Health 25(4), 332–339 (2016). https://doi.org/10.1089/jwh.2015.5556
Selesnick, I.W.W., Baraniuk, R.G.G., Kingsbury, N.C.C.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22, 123–151 (2005). https://doi.org/10.1109/MSP.2005.1550194
Soh, L., Tsatsoulis, C.: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999). https://doi.org/10.1109/36.752194
Song, W.K., Lee, S.C., Lee, E.S., Kim, C.Y., Kim, S.S.: Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Investigative Ophthalmol. Vis. Sci. 51, 3913–3918 (2010). https://doi.org/10.1167/iovs.09-4189
Svetozarskiy, S.N., Kopishinskaya, S.V.: Retinal optical coherence tomography in neurodegenerative diseases (Review). Sovremennye Tehnologii v Medicine 7(1), 116–123 (2015). https://doi.org/10.17691/stm2015.7.1.14
Wang, S., Lu, S., Dong, Z., Yang, J., Yang, M., Zhang, Y.: Dual-tree complex wavelet transform and twin support vector machine for pathological brain detection. Appl. Sci. 6(169), 1–18 (2016). https://doi.org/10.3390/app6060169
Wong, A., Chan, C., Hui, S.: Relationship of gender, body mass index, and axial length with central retinal thickness using optical coherence tomography. Eye 19, 292–297 (2005). https://doi.org/10.1038/sj.eye.6701466
World Medical Association: World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J. Am. Med. Assoc. 310(20), 2191–2194 (2013). https://doi.org/10.1001/jama.2013.281053
Zhu, D., et al.: Age at natural menopause and risk of incident cardiovascular disease: a pooled analysis of individual patient data. Lancet Public Health 4, 553–564 (2019). https://doi.org/10.1016/S2468-2667(19)30155-0
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Conflicts of Interest
The authors declare that they have no conflict of interest.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Nunes, A., Serranho, P., Quental, H., Castelo-Branco, M., Bernardes, R. (2020). The Effect of Menopause on the Sexual Dimorphism in the Human Retina – Texture Analysis of Optical Coherence Tomography Data. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12132. Springer, Cham. https://doi.org/10.1007/978-3-030-50516-5_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-50516-5_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50515-8
Online ISBN: 978-3-030-50516-5
eBook Packages: Computer ScienceComputer Science (R0)