Abstract
In this paper, we present XDN, an optimization and inference engine for accelerating residual neural networks on Cambricon chips. We leverage a channel pruning method to compress the weights of ResNet-50. By exploring the optimization opportunities in computational graphs, we propose a layer fusion strategy, which dramatically decreases the number of scalar computation layers, such as Batch Normalization, Scale. Furthermore, we design an efficient implementation of XDN, including data preprocessing, hyper-parameter auto-tuning, etc. The experimental results show that the ResNet-50 model can achieve significant speedup without accuracy loss by using our XDN engine.
Li, G., Wang, X., Ma, X.—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, T., et al.: Diannao: a small-footprint high-throughput accelerator for ubiquitous machine-learning. In: ACM Sigplan Notices, pp. 269–284. ACM (2014)
Chen, Y., Chen, T., Xu, Z., Sun, N., Temam, O.: Diannao family: energy-efficient hardware accelerators for machine learning. Communi. ACM 1, 105–112 (2016)
Chen, Y., et al.: Dadiannao: a machine-learning supercomputer. In: Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 609–622. IEEE Computer Society (2014)
Deng, W., Wang, P., Wang, J., Li, C., Guo, M.: PSL: exploiting parallelism, sparsity and locality to accelerate matrix factorization on x86 platforms. In: International Symposium on Benchmarking, Measuring and Optimization (Bench 2019). Springer (2019)
Gao, W., et al.: AIBench: towards scalable and comprehensive datacenter AI benchmarking. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 3–9. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_1
Gao, W., et al.: AIBench: an industry standard internet service AI benchmark suite. arXiv preprint arXiv:1908.08998 (2019)
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Guo, K., Zeng, S., Yu, J., Wang, Y., Yang, H.: A survey of FPGA-based neural network inference accelerators. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 12(1), 1–26 (2019)
Hao, T., et al.: Edge AIBench: towards comprehensive end-to-end edge computing benchmarking. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 23–30. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_3
Hao, T., Zheng, Z.: The implementation and optimization of matrix decomposition based collaborative filtering task on x86 platform. In: International Symposium on Benchmarking, Measuring and Optimization (Bench 2019). Springer (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hou, P., Yu, J., Miao, Y., Tai, Y., Wu, Y., Zhao, C.: RVTensor: a light-weight neural network inference framework based on the risc-v architecture. In: International Symposium on Benchmarking, Measuring and Optimization (Bench 2019). Springer (2019)
Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)
Jiang, Z., et al.: HPC AI500: a benchmark suite for HPC AI systems. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 10–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_2
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Li, J., Jiang, Z.: Performance analysis of cambricon MLU100. In: International Symposium on Benchmarking, Measuring and Optimization (Bench 2019). Springer (2019)
Luo, C., et al.: AIoT bench: towards comprehensive benchmarking mobile and embedded device intelligence. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 31–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_4
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Xiong, X., Wen, X., Huang, C.: Improving RGB-D face recognition via transfer learning from a pretrained 2D network. In: Gao, W., et al. (eds.): Bench 2019, LNCS, vol. 12093, pp. 141–148. Springer, Cham (2019)
Acknowledgment
This work is supported by the National Key R&D Program of China under Grant No. 2017YFB1003103, the Key Program of National Natural Science Foundation of China under Grant No. 61432016, and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant No. 61521092.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, G., Wang, X., Ma, X., Liu, L., Feng, X. (2020). XDN: Towards Efficient Inference of Residual Neural Networks on Cambricon Chips. In: Gao, W., Zhan, J., Fox, G., Lu, X., Stanzione, D. (eds) Benchmarking, Measuring, and Optimizing. Bench 2019. Lecture Notes in Computer Science(), vol 12093. Springer, Cham. https://doi.org/10.1007/978-3-030-49556-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-49556-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-49555-8
Online ISBN: 978-3-030-49556-5
eBook Packages: Computer ScienceComputer Science (R0)