[go: up one dir, main page]

Skip to main content

A Framework for Pattern Mining and Anomaly Detection in Multi-dimensional Time Series and Event Logs

  • Conference paper
  • First Online:
New Frontiers in Mining Complex Patterns (NFMCP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11948))

Included in the following conference series:

  • 926 Accesses

Abstract

In the present-day, sensor data and textual logs are generated by many devices. Analysing these time series data leads to the discovery of interesting patterns and anomalies. In recent years, numerous algorithms have been developed to discover interesting patterns in time series data as well as detect periods of anomalous behaviour. However, these algorithms are challenging to apply in real-world settings. We propose a framework, consisting of generic transformations, that allows to combine state-of-the-art time series representation, pattern mining, and pattern-based anomaly detection algorithms. Using an early- or late integration our framework handles a mix of multi-dimensional continuous series and event logs. In addition, we present an open-source, lightweight, interactive tool that assists both pattern mining and domain experts to select algorithms, specify parameters, and visually inspect the results, while shielding them from the underlying technical complexity of implementing our framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Source and datasets available at https://bitbucket.org/len_feremans/tipm_pub.

References

  1. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  2. Decroos, T., Schütte, K., De Beéck, T.O., Vanwanseele, B., Davis, J.: AMIE: automatic monitoring of indoor exercises. In: Brefeld, U., et al. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11053, pp. 424–439. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10997-4_26

    Chapter  Google Scholar 

  3. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008)

    Article  Google Scholar 

  4. Esponda, F., Forrest, S., Helman, P.: A formal framework for positive and negative detection schemes. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(1), 357–373 (2004)

    Google Scholar 

  5. Feremans, L., Cule, B., Devriendt, C., Goethals, B., Helsen, J.: Pattern mining for learning typical turbine response during dynamic wind turbine events. In: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V001T02A018. American Society of Mechanical Engineers (2017)

    Google Scholar 

  6. Feremans, L., Cule, B., Goethals, B.: Mining top-k quantile-based cohesive sequential patterns. In: Proceedings of the 2018 SIAM International Conference on Data Mining, pp. 90–98. SIAM (2018)

    Google Scholar 

  7. Feremans, L., Vercruyssen, V., Cule, B., Meert, W., Goethals, B.: Pattern-based anomaly detection in mixed-type time series. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases (2019)

    Google Scholar 

  8. Fournier-Viger, P., et al.: The SPMF open-source data mining library version 2. In: Berendt, B., et al. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9853, pp. 36–40. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46131-1_8

    Chapter  Google Scholar 

  9. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

    Article  Google Scholar 

  10. Goethals, B., Moens, S., Vreeken, J.: Mime: a framework for interactive visual pattern mining. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 757–760. ACM (2011)

    Google Scholar 

  11. He, Z., Xu, X., Huang, Z.J., Deng, S.: FP-outlier: frequent pattern based outlier detection. Comput. Sci. Inf. Syst. 2(1), 103–118 (2005)

    Article  Google Scholar 

  12. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3), 263–286 (2001)

    Article  Google Scholar 

  13. Lam, H.T., Mörchen, F., Fradkin, D., Calders, T.: Mining compressing sequential patterns. Stat. Anal. Data Mining: ASA Data Sci. J. 7(1), 34–52 (2014)

    Article  MathSciNet  Google Scholar 

  14. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 2–11. ACM (2003)

    Google Scholar 

  15. Moens, S., Jeunen, O., Goethals, B.: Interactive evaluation of recommender systems with sniper - an episode mining approach. In: Proceedings of Thirteenth ACM Conference on Recommender Systems. RecSys 2019, September 2019

    Google Scholar 

  16. Pei, J., Han, J., Wang, W.: Constraint-based sequential pattern mining: the pattern-growth methods. J. Intell. Inf. Syst. 28(2), 133–160 (2007)

    Article  Google Scholar 

  17. Petitjean, F., Li, T., Tatti, N., Webb, G.I.: Skopus: mining top-k sequential patterns under leverage. Data Mining Knowl. Discov. 30(5), 1086–1111 (2016)

    Article  MathSciNet  Google Scholar 

  18. Senin, P., et al.: GrammarViz 2.0: a tool for grammar-based pattern discovery in time series. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8726, pp. 468–472. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44845-8_37

    Chapter  Google Scholar 

  19. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 947–956. ACM (2009)

    Google Scholar 

  20. Yeh, C.C.M., et al.: Matrix profile i: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 1317–1322. IEEE (2016)

    Google Scholar 

  21. Zaki, M.J., Meira, W.: Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  22. Zimmermann, A.: Understanding episode mining techniques: benchmarking on diverse, realistic, artificial data. Intell. Data Anal. 18(5), 761–791 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the VLAIO SBO HYMOP project for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Len Feremans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feremans, L., Vercruyssen, V., Meert, W., Cule, B., Goethals, B. (2020). A Framework for Pattern Mining and Anomaly Detection in Multi-dimensional Time Series and Event Logs. In: Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2019. Lecture Notes in Computer Science(), vol 11948. Springer, Cham. https://doi.org/10.1007/978-3-030-48861-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48861-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48860-4

  • Online ISBN: 978-3-030-48861-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics