[go: up one dir, main page]

Skip to main content

Data Preprocessing via Multi-sequences MRI Mixture to Improve Brain Tumor Segmentation

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2020)

Abstract

Automatic brain tumor segmentation is one of the crucial problems nowadays among other directions and domains where daily clinical workflow requires to put a lot of efforts while studying computer tomography (CT) or structural magnetic resonance imaging (MRI) scans of patients with various pathologies. The MRI is the most common method of primary detection, non-invasive diagnostics and a source of recommendations for further treatment. The brain is a complex structure, different areas of which have different functional significance.

In this paper, we propose a robust pre-processing technique which allows to consider all available information from MRI scans by composition of T1, T1C and FLAIR sequences in the unique input. Such approach enriches the input data for the automatic segmentation process and helps to improve the accuracy of the segmentation performance.

Proposed method demonstrates significant improvement on the binary segmentation problem with respect to Dice and Recall metrics compare to similar training/evaluation procedure based on any single sequence regardless of the chosen neural network architecture.

Obtained results demonstrates significant evaluation improvement while combining three MRI sequences either as weighted mixture to get 1-channel mixed up image or in the 3-channel RGB like image for both considered problems - binary brain tumor segmentation with and without inclusion of edema in the region of interest (ROI). Final improvements on the test part of data set are in the range of 5.6–9.1% on the single-fold trained model according to the Dice metric with the best value of 0.902 without considering a priori “empty” slides. We also demonstrate strong impact on the Recall metric with the growth up to 9.5%. Additionally this approach demonstrates significant improvement according to the Recall metric getting the increase by up to 11%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 1–31 (2018)

    Article  Google Scholar 

  2. Bobinski, M., Greco, C.M., Schrot, R.J.: Giant intracranial medullary thyroid carcinoma metastasis presenting as apoplexy. J. Skull Base 19, 359–362 (2009)

    Article  Google Scholar 

  3. Chrastina, J., Novak, Z., Riha, I., et al.: Diagnostic value of brain tumor neuroendoscopic biopsy and correlation with open tumor resection. J. Neurolog. Surg. Part A 75(2), 110–115 (2012)

    Article  Google Scholar 

  4. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  5. Li, C., Wang, S., Serra, A., Torheim, T., Yan, J.L., et al.: Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma. Eur. Radiol. 29, 1–12 (2019)

    Article  Google Scholar 

  6. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  7. Chaurasia, A., Culurciello, E.: LinkNet: exploiting encoder representations for efficient semantic segmentation, CoRR, vol. abs/1707.03718 (2017)

    Google Scholar 

  8. Milletari, F., et al.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision, pp. 565–571. IEEE (2016)

    Google Scholar 

  9. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 1, pp. 5987–5995 (2017)

    Google Scholar 

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks, CoRR abs/1709.01507 (2017). https://arxiv.org/abs/1709.01507

  11. Ge, C., Gu, I.Y., Store Jakola, A., Yang, J.: Cross-modality augmentation of brain MR images using a novel pairwise generative adversarial network for enhanced glioma classification. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 559–563 (2019)

    Google Scholar 

  12. Havaei, M., Guizard, N., Chapados, N., Bengio, Y.: HeMIS: hetero-modal image segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 469–477. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_54

    Chapter  Google Scholar 

  13. Varsavsky, T., Eaton-Rosen, Z., Sudre, C.H., Nachev, P., Cardoso, M.J.: PIMMS: permutation invariant multi-modal segmentation, CoRR, vol. abs/1807.06537 (2018). http://arxiv.org/abs/1807.06537

  14. Dorent, R., Joutard, S., Modat, M., Ourselin, S., Vercauteren, T.: Hetero-modal variational encoder-decoder for joint modality completion and segmentation, arXiv e-prints. arXiv:1907.11150, July 2019

  15. Roy, A.G., Navab, N., Wachinger, C.: Recalibrating fully convolutional networks with spatial and channel ‘squeeze & excitation’ blocks, CoRR abs/1808.08127 (2018). https://arxiv.org/abs/1808.08127

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Buslaev, A., Parinov, A., Khvedchenya, E., Iglovikov, V., Kalinin, A.: Albumentations: fast and flexible image augmentations. ArXiv e-prints, 1809.06839 (2018)

    Google Scholar 

Download references

Acknowledgement

The reported study was funded by RFBR according to the research project No 19-29-01103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Groza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Groza, V. et al. (2020). Data Preprocessing via Multi-sequences MRI Mixture to Improve Brain Tumor Segmentation. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45385-5_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics