[go: up one dir, main page]

Skip to main content

Decentralised Monte Carlo Tree Search for Active Perception

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XII

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 13))

Abstract

We propose a decentralised variant of Monte Carlo tree search (MCTS) that is suitable for a variety of tasks in multi-robot active perception. Our algorithm allows each robot to optimise its own individual action space by maintaining a probability distribution over plans in the joint-action space. Robots periodically communicate a compressed form of these search trees, which are used to update the locally-stored joint distributions using an optimisation approach inspired by variational methods. Our method admits any objective function defined over robot actions, assumes intermittent communication, and is anytime.We extend the analysis of the standard MCTS for our algorithm and characterise asymptotic convergence under reasonable assumptions. We evaluate the practical performance of our method for generalised team orienteering and active object recognition using real data, and show that it compares favourably to centralised MCTS even with severely degraded communication. These examples support the relevance of our algorithm for real-world active perception with multi-robot systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amato, C.: Decision Making Under Uncertainty: Theory and Application, chap. Cooperative Decision Making. MIT Press, Cambridge and London (2015)

    Google Scholar 

  2. Auger, D.: Multiple tree for partially observable Monte-Carlo tree search. In: Proc. of EvoApplications. pp. 53–62 (2011)

    Google Scholar 

  3. Bajcsy, R.: Active perception. Proceedings of the IEEE 76(8), 966–1005 (1988)

    Google Scholar 

  4. Best, G., Faigl, J., Fitch, R.: Multi-robot path planning for budgeted active perception with self-organising maps. In: Proc. of IEEE/RSJ IROS (2016)

    Google Scholar 

  5. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree search methods. IEEE T. Comput. Int. AI Games 4(1), 1–43 (2012)

    Google Scholar 

  6. Charrow, B.: Information-theoretic active perception for multi-robot teams. Ph.D. thesis, University of Pennsylvania (2015)

    Google Scholar 

  7. Chaslot, G.M.J.B., Winands, M.H.M., van den Herik, H.J.: Parallel Monte-Carlo tree search. In: Proc. of CG. pp. 60–71 (2008)

    Google Scholar 

  8. Douillard, B., Quadros, A., Morton, P., Underwood, J.P., Deuge, M.D.: A 3D classifier trained without field samples. In: Proc. of ICARCV. pp. 805 – 810 (2012)

    Google Scholar 

  9. Faigl, J., Pěnička, R., Best, G.: Self-organizing map-based solution for the orienteering problem with neighborhoods. In: Proc. of IEEE SMC (2016)

    Google Scholar 

  10. Gan, S.K., Fitch, R., Sukkarieh, S.: Online decentralized information gathering with spatial–temporal constraints. Auton. Robots 37(1), 1 – 25 (2014)

    Google Scholar 

  11. Garivier, A., Moulines, E.: On upper-confidence bound policies for switching bandit problems. In: Proc. of AMA ALT. pp. 174–188 (2011)

    Google Scholar 

  12. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: A survey of recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2), 315 – 332 (2016)

    Google Scholar 

  13. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Proc. of ECML. pp. 282–293 (2006)

    Google Scholar 

  14. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9, 235 – 284 (2008)

    Google Scholar 

  15. Kulkarni, A.J., Tai, K.: Probability collectives: A multi-agent approach for solving combinatorial optimization problems. Appl. Soft Comput. 10(3), 759 – 771 (2010)

    Google Scholar 

  16. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions–I. Math. Program. 14(1), 265 – 294 (1978)

    Google Scholar 

  17. Patten, T., Zillich, M., Fitch, R., Vincze, M., Sukkarieh, S.: Viewpoint evaluation for online 3-D active object classification. IEEE Robot. Autom. Lett. 1(1), 73–81 (2016)

    Google Scholar 

  18. Patten, T., Kassir, A., Martens, W., Douillard, B., Fitch, R., Sukkarieh, S.: A Bayesian approach for time-constrained 3D outdoor object recognition. In: ICRA 2015 Workshop on Scaling Up Active Perception (2015)

    Google Scholar 

  19. Rezek, I., Leslie, D.S., Reece, S., Roberts, S.J., Rogers, A., Dash, R.K., Jennings, N.R.: On similarities between inference in game theory and machine learning. J. Artif. Intell. Res. 33, 259–283 (2008)

    Google Scholar 

  20. Silver, D., Veness, J.: Monte-Carlo planning in large POMDPs. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23, pp. 2164–2172. Curran Inc. (2010)

    Google Scholar 

  21. Singh, A., Krause, A., Guestrin, C., Kaiser, W.J.: Efficient informative sensing using multiple robots. J. Artif. Int. Res. 34(1), 707 – 755 (2009)

    Google Scholar 

  22. Wolpert, D.H., Bieniawski, S.: Distributed control by Lagrangian steepest descent. In: Proc. of IEEE CDC. pp. 1562–1567 (2004)

    Google Scholar 

  23. Wolpert, D.H., Bieniawski, S.R., Rajnarayan, D.G.: Handbook of Statistics 31: Machine Learning: Theory and Applications, chap. Probability collectives in optimization, pp. 61 – 99. Elsevier (2013)

    Google Scholar 

  24. Wolpert, D.H., Strauss, C.E.M., Rajnarayan, D.: Advances in distributed optimization using probability collectives. Adv. Complex Syst. 09(04), 383–436 (2006)

    Google Scholar 

  25. Xu, Z., Fitch, R., Underwood, J., Sukkarieh, S.: Decentralized coordinated tracking with mixed discrete-continuous decisions. J. Field Robot. 30(5), 717 – 740 (2013)

    Google Scholar 

  26. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Trans. Inf. Theor. 51(7), 2282–2312 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Best .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Best, G., Cliff, O.M., Patten, T., Mettu, R.R., Fitch, R. (2020). Decentralised Monte Carlo Tree Search for Active Perception. In: Goldberg, K., Abbeel, P., Bekris, K., Miller, L. (eds) Algorithmic Foundations of Robotics XII. Springer Proceedings in Advanced Robotics, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-43089-4_55

Download citation

Publish with us

Policies and ethics