[go: up one dir, main page]

Skip to main content

A Mathematical Model for Bone Cell Population Dynamics of Fracture Healing Considering the Effect of Energy Dissipation

  • Chapter
  • First Online:
Mathematical Applications in Continuum and Structural Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 127))

  • 692 Accesses

Abstract

The importance of mechanical modeling has been increasing in recent years for almost every area of biological sciences. The process of bone recovery is one of the issues to be addressed within a mechanical framework. In this study, a model for the bone healing process is proposed taking into account the bone cell population as well as the effect of energy dissipation. Numerical simulations for bone under a cyclic external loading are performed in order to show predicting capabilities of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • An B, Zhao X, Arola D, Zhang D (2014) Fracture analysis for biological materials with an expanded cohesive zone model. J Biomech 47(10):2244–2248

    Google Scholar 

  • Andreaus U, Giorgio I, Madeo A (2015) Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. Z Angew Math Phys 66(1):209–237

    MathSciNet  MATH  Google Scholar 

  • Baiotto S, Zidi M (2004) Theoretical and numerical study of a bone remodeling model: the effect of osteocyte cells distribution. Biomech Model Mechanobiol 3(1):6–16

    MATH  Google Scholar 

  • Bednarczyk E, Lekszycki T (2016) A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset. Z Angew Math Phys 67(4):94

    MathSciNet  MATH  Google Scholar 

  • Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618–627

    Google Scholar 

  • Cricrì G, Perrella M, Sessa S, Valoroso N (2015) A novel fixture for measuring mode iii toughness of bonded assemblies. Eng Fract Mech 138:1–18

    Google Scholar 

  • Del Vescovo D, Giorgio I (2014) Dynamic problems for metamaterials: Review of existing models and ideas for further research. Int J Eng Sci 80. https://doi.org/10.1016/j.ijengsci.2014.02.022

  • Della Corte A, Giorgio I, Scerrato D (2019) A review of recent developments in mathematical modeling of bone remodeling. Proc Inst Mech Eng, Part H: J Eng Med, 0954411919857599

    Google Scholar 

  • dell’Isola F, Andreaus U, Placidi L (2014) At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. an underestimated and still topical contribution of gabrio piola. Math Mech Solids 20:887–928. https://doi.org/10.1177/1081286513509811

    Article  MATH  Google Scholar 

  • dell’Isola F, Corte A, Giorgio I (2016) Higher-gradient continua: The legacy of piola, mindlin, sedov and toupin and some future research perspectives. Math Mech Solids 22. https://doi.org/10.1177/1081286515616034

  • Elbanna AE, Carlson JM (2013) Dynamics of polymer molecules with sacrificial bond and hidden length systems: towards a physically-based mesoscopic constitutive law. PloS one 8(4)

    Google Scholar 

  • George D, Allena R, Rémond Y (2018) A multiphysics stimulus for continuum mechanics bone remodeling. Math Mech Complex Syst 6(4):307–319

    MathSciNet  MATH  Google Scholar 

  • George D, Allena R, Rémond Y (2019) Integrating molecular and cellular kinetics into a coupled continuum mechanobiological stimulus for bone reconstruction. Continuum Mech Thermodyn 31(3):725–740

    MathSciNet  Google Scholar 

  • Giorgio I, Andreaus U, Scerrato D, Dell’Isola F (2016) A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech Model Mechanobiol 15(5):1325–1343

    Google Scholar 

  • Giorgio I, Andreaus U, Dell’Isola F, Lekszycki T (2017a) Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mech Lett 13:141–147

    Google Scholar 

  • Giorgio I, Andreaus U, Lekszycki T, Corte AD (2017b) The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Math Mech Solids 22(5):969–987

    Google Scholar 

  • Giorgio I, Andreaus U, Scerrato D, Braidotti P (2017c) Modeling of a non-local stimulus for bone remodeling process under cyclic load: application to a dental implant using a bioresorbable porous material. Math Mech Solids 22(9):1790–1805

    MathSciNet  MATH  Google Scholar 

  • Giorgio I, Rizzi N, Turco E (2017d) Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc R Soc A: Math, Phys Eng Sci 473(2207):20170,636

    Google Scholar 

  • Giorgio I, Dell’Isola F, Andreaus U, Alzahrani F, Hayat T, Lekszycki T (2019) On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon. Biomech Model Mechanobiol, 1–25

    Google Scholar 

  • Greco F, Luciano R, Serino G, Vaiana N (2018) A mixed explicit-implicit time integration approach for nonlinear analysis of base-isolated structures. Ann Solid Struct Mech 10(1):17–29

    Google Scholar 

  • Hosseini HS, Pahr DH, Zysset PK (2012) Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains. J Mech Behav Biomed Mater 15:93–102

    Google Scholar 

  • Klein-Nulend J, Bacabac R, Bakker A (2012) Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cells Mater 24:278–291

    Google Scholar 

  • Kumar C, Jasiuk I, Dantzig J (2011) Dissipation energy as a stimulus for cortical bone adaptation. J Mech Mater Struct 6(1):303–319

    Google Scholar 

  • Lanyon LE, Rubin C (1984) Static vs dynamic loads as an influence on bone remodelling. J Biomech 17(12):897–905

    Google Scholar 

  • Lekszycki T, dell’Isola F (2012) A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 92(6):426–444

    MathSciNet  MATH  Google Scholar 

  • Lieou CK, Elbanna AE, Carlson JM (2013) Sacrificial bonds and hidden length in biomaterials: a kinetic constitutive description of strength and toughness in bone. Phys Rev E 88(1):012,703

    Google Scholar 

  • Lu Y, Lekszycki T (2015) Modeling of an initial stage of bone fracture healing. Continuum Mech Thermodyn 27(4–5):851–859

    MathSciNet  MATH  Google Scholar 

  • Lu Y, Lekszycki T (2016) A novel coupled system of non-local integro-differential equations modelling young’s modulus evolution, nutrients’ supply and consumption during bone fracture healing. Z Angew Math Phys 67(5):111

    MathSciNet  MATH  Google Scholar 

  • Lu Y, Lekszycki T (2017) Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone substitute. Math Mech Solids 22(10):1997–2010

    MathSciNet  MATH  Google Scholar 

  • Madeo A, George D, Lekszycki T, Nierenberger M, Rémond Y (2012) A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. Comptes Rendus Mécanique 340(8):575–589

    Google Scholar 

  • Maes C, Coenegrachts L, Stockmans I, Daci E, Luttun A, Petryk A, Gopalakrishnan R, Moermans K, Smets N, Verfaillie CM et al (2006) Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair. J Clin Investig 116(5):1230–1242

    Google Scholar 

  • Marmo F, Masi D, Rosati L (2018a) Thrust network analysis of masonry helical staircases. Int J Architect Herit 12(5):828–848

    Google Scholar 

  • Marmo F, Ruggieri N, Toraldo F, Rosati L (2018b) Historical study and static assessment of an innovative vaulting technique of the 19th century. Int J Architect Herit

    Google Scholar 

  • Marmo F, Toraldo F, Rosati A, Rosati L (2018c) Numerical solution of smooth and rough contact problems. Meccanica 53(6):1415–1440

    MathSciNet  MATH  Google Scholar 

  • Marmo F, Demartino C, Candela G, Sulpizio C, Briseghella B, Spagnuolo R, Xiao Y, Vanzi I, Rosati L (2019) On the form of the musmeci’s bridge over the basento river. Eng Struct 191:658–673

    Google Scholar 

  • Marmo F, Sessa S, Vaiana N, De Gregorio D, Rosati L (2020) Complete solutions of three-dimensional problems in transversely isotropic media. Continuum Mech Thermodyn 32(3):775–802

    MathSciNet  MATH  Google Scholar 

  • Mayr-Wohlfart U, Kessler S, Puhl W, Günther K, Knöchel W (2001) Bmp-4 of xenopus Laevis stimulates differentiation of human primary osteoblast-like cells. J Bone Joint Surgery British 83(1):144–147

    Google Scholar 

  • Paradiso M, Marmo F, Rosati L (2019) Consistent derivation of a beam model from the saint Venant’s solid model. Int J Solids Struct 159:90–110

    Google Scholar 

  • Park H, Lakes R (1986) Cosserat micromechanics of human bone: strain redistribution by a hydration sensitive constituent. J Biomech 19(5):385–397

    Google Scholar 

  • Perricone V, Grun T, Marmo F, Langella C, Carnevali MDC (2020) Constructional design of echinoid endoskeleton: main structural components and their potential for biomimetic applications. Bioinspirat Biomimet

    Google Scholar 

  • Rapisarda AC, Della Corte A, Drobnicki R, Di Cosmo F, Rosa L (2019) A model for bone mechanics and remodeling including cell populations dynamics. Z Angew Math Phys 70(1):9

    MathSciNet  MATH  Google Scholar 

  • Ridha H, Thurner PJ (2013) Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests. J Mech Behav Biomed Mater 27:94–106

    Google Scholar 

  • Ritchie RO, Buehler MJ, Hansma P (2009) Plasticity and toughness in bone. Phys Today

    Google Scholar 

  • Scala I, Spingarn C, Rémond Y, Madeo A, George D (2017) Mechanically-driven bone remodeling simulation: Application to lipus treated rat calvarial defects. Math Mech Solids 22(10):1976–1988

    MathSciNet  MATH  Google Scholar 

  • Serpieri R, Sessa S, Rosati L (2018) A mitc-based procedure for the numerical integration of a continuum elastic-plastic theory of through-the-thickness-jacketed shell structures. Compos Struct 191:209–220

    Google Scholar 

  • Sessa S, Marmo F, Rosati L (2015) Effective use of seismic response envelopes for reinforced concrete structures. Earthquake Eng Struct Dyn 44(14):2401–2423

    Google Scholar 

  • Sessa S, Serpieri R, Rosati L (2017) A continuum theory of through-the-thickness jacketed shells for the elasto-plastic analysis of confined composite structures: Theory and numerical assessment. Compos B Eng 113:225–242

    Google Scholar 

  • Sessa S, Marmo F, Rosati L, Leonetti L, Garcea G, Casciaro R (2018a) Evaluation of the capacity surfaces of reinforced concrete sections: Eurocode versus a plasticity-based approach. Meccanica 53(6):1493–1512

    Google Scholar 

  • Sessa S, Marmo F, Vaiana N, Rosati L (2018b) A computational strategy for eurocode 8-compliant analyses of reinforced concrete structures by seismic envelopes. J Earthquake Eng, 1–34

    Google Scholar 

  • Sessa S, Marmo F, Vaiana N, De Gregorio D, Rosati L (2019a) Strength hierarchy provisions for transverse confinement systems of shell structural elements. Compos B Eng 163:413–423

    Google Scholar 

  • Sessa S, Marmo F, Vaiana N, Rosati L (2019b) Probabilistic assessment of axial force-biaxial bending capacity domains of reinforced concrete sections. Meccanica 54(9):1451–1469

    MathSciNet  Google Scholar 

  • Sheidaei A, Kazempour M, Hasanabadi A, Nosouhi F, Pithioux M, Baniassadi M, Rémond Y, George D (2019) Influence of bone microstructure distribution on developed mechanical energy for bone remodeling using a statistical reconstruction method. Math Mech Solids, 1081286519828418

    Google Scholar 

  • Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23(5):399–407

    Google Scholar 

  • Vaiana N, Spizzuoco M, Serino G (2017) Wire rope isolators for seismically base-isolated lightweight structures: experimental characterization and mathematical modeling. Eng Struct 140:498–514

    Google Scholar 

  • Vaiana N, Sessa S, Marmo F, Rosati L (2019) Nonlinear dynamic analysis of hysteretic mechanical systems by combining a novel rate-independent model and an explicit time integration method. Nonlinear Dyn 98(4):2879–2901

    MATH  Google Scholar 

  • Vaiana N, Capuano R, Sessa S, Marmo F, Rosati L (2021a) Nonlinear dynamic analysis of seismically base-isolated structures by a novel opensees hysteretic material model. Appl Sci 11(3):900

    Google Scholar 

  • Vaiana N, Sessa S, Rosati L (2021b) A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena. Mech Syst Signal Process 146(106):984

    Google Scholar 

  • Webb J, Tricker J (2000) A review of fracture healing. Curr Orthop 14(6):457–463

    Google Scholar 

  • Wolff J (1892) Das Gesetz der Transformation der Knochen (The Law of Bone Remodeling, translated by P. Maquet and R. Furlong, 1986). Springer, Beglin

    Google Scholar 

  • Yang J, Lakes RS (1982) Experimental study of micropolar and couple stress elasticity in compact bone in bending. J Biomech 15(2):91–98

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Ivan Giorgio for his hints and advise in this research. We are also grateful to Dr. Alessandro Della Corte for his comments on an earlier version of the manuscript.

We would like to thank the “International Research Center for the Mathematics and Mechanics of Complex Systems” (M&MoCS), Universit‘a dell’Aquila, Italy, for all the support, and also Prof. Mahmoud Kadkhodaei, Mechanical Engineering Department of Isfahan University of Technology, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Timofeev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Darvishi, M., Dadras, H., Mahmoodi Gahrouei, M., Tabesh, K., Timofeev, D. (2021). A Mathematical Model for Bone Cell Population Dynamics of Fracture Healing Considering the Effect of Energy Dissipation. In: Marmo, F., Sessa, S., Barchiesi, E., Spagnuolo, M. (eds) Mathematical Applications in Continuum and Structural Mechanics. Advanced Structured Materials, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-42707-8_3

Download citation

Publish with us

Policies and ethics