Abstract
Security constraints that enforce security requirements characterize healthcare systems. These constraints have a substantial impact on the resiliency of the final system. Security requirements modelling approaches allow the prevention of cyber incidents; however, the focus to date has been on prevention rather than resiliency. Resiliency extends into the detection, mitigation and recovery after security violations. In this paper, we propose an enhanced at a conceptual level that attempts to align cybersecurity with resiliency. It does so by extending the Secure Tropos cybersecurity modelling language to include resiliency. The proposed conceptual model examines resiliency from three viewpoints, namely the security requirements, the healthcare context and its implementational capability. We present an overview of our conceptual model of a cyber resiliency language and discuss a case study to attest the healthcare context in our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
ISO/IEC/IEEE 15288:2015. https://www.iso.org/standard/63711.html. Accessed 12 July 2019
Li, T., Horkoff, J., Mylopoulos, J.: Integrating security patterns with security requirements analysis using contextual goal models. In: Frank, U., Loucopoulos, P., Pastor, Ó., Petrounias, I. (eds.) PoEM 2014. LNBIP, vol. 197, pp. 208–223. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45501-2_15
Antón, A.I., Earp, J.B.: Strategies for developing policies and requirements for secure and private electronic commerce. In: Ghosh, A.K. (ed.) E-Commerce Security and Privacy. Advances in Information Security, vol. 2, pp. 67–86. Springer, Boston (2001). https://doi.org/10.1007/978-1-4615-1467-1_5
Argyropoulos, N., Mouratidis, H., Fish, A.: Advances in Conceptual Modeling. Springer, Cham (2015). https://doi.org/10.1007/978-3-642-33999-8
Arney, D., Pajic, M., Goldman, J.M., Lee, I., Mangharam, R., Sokolsky, O.: Toward patient safety in closed-loop medical device systems. In: Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems - ICCPS 2010, pp. 139–148. ACM Press, Stockholm (2010)
Athinaiou, M., Mouratidis, H., Fotis, T., Pavlidis, M., Panaousis, E.: Towards the definition of a security incident response modelling language. In: Furnell, S., Mouratidis, H., Pernul, G. (eds.) TrustBus 2018. LNCS, vol. 11033, pp. 198–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98385-1_14
Boddy, A., Hurst, W., Mackay, M., Rhalibi, A.E.: A study into data analysis and visualisation to increase the cyber-resilience of healthcare infrastructures. In: Proceedings of the 1st International Conference on Internet of Things and Machine Learning - IML 1917, pp. 1–7. ACM Press, Liverpool (2017)
Den Braber, F., Hogganvik, I., Lund, M.S., Stlen, K., Vraalsen, F.: Model-based security analysis in seven steps a guided tour to the CORAS method. BT Technol. J. 25(1), 101–117 (2007)
Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: an agent-oriented software development methodology. Auton. Agents Multi-Agent Syst. 8(3), 203–236 (2004)
Chapurlat, V., et al.: Towards a model-based method for resilient critical infrastructure engineering how to model critical infrastructures and evaluate ist resilience? How to model critical infrastructures and evaluate its Resilience? In: 2018 13th Annual Conference on System of Systems Engineering (SoSE), pp. 561–567. IEEE, Paris (2018)
Chen, Q., Lambright, J.: Towards realizing a self-protecting healthcare information system. In: 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), pp. 687–690. IEEE, Atlanta (2016)
Chernyshev, M., Zeadally, S., Baig, Z.: Healthcare data breaches: implications for digital forensic readiness. J. Med. Syst. 43(1), 7 (2019)
Cichonski, P., Millar, T., Grance, T., Scarfone, K.: Computer Security Incident Handling Guide: Recommendations of the National Institute of Standards and Technology. Technical report NIST SP 800-61r2, National Institute of Standards and Technology (2012)
Cooper, T., Collmann, J., Neidermeier, H.: Organizational repertoires and rites in health information security. Camb. Q. Healthc. Ethics 17(4), 441–452 (2008)
Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci. Comput. Program. 20(1–2), 3–50 (1993)
DeVoe, C., Rahman, S.S.M.: Incident response plan for a small to medium sized hospital. Int. J. Netw. Secur. Appl. 5(2), 1–20 (2013)
Genes, N., Chary, M., Chason, K.W.: Case study. An academic medical centers response to widespread computer failure. Am. J. Disaster Med. 8(2), 145–150 (2013)
Ghafur, S., Grass, E., Jennings, N.A., Darzi, A.: The challenges of cybersecurity in health care: the UK National Health Service as a case study. Lancet Digit. Health 1(1), e10–e12 (2019)
Giorgini, P., Massacci, F., Zannone, N.: Security and trust requirements engineering. In: Aldini, A., Gorrieri, R., Martinelli, F. (eds.) FOSAD 2004-2005. LNCS, vol. 3655, pp. 237–272. Springer, Heidelberg (2005). https://doi.org/10.1007/11554578_8
Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis and reasoning in the Tropos methodology. Eng. Appl. Artif. Intell. 18(2), 159–171 (2005)
He, Y., Johnson, C.: Challenges of information security incident learning: an industrial case study in a Chinese healthcare organization. Inf. Health Soc. Care 42(4), 393–408 (2017)
Lee, I., et al.: Challenges and research directions in medical cyberphysical systems. Proc. IEEE 100(1), 75–90 (2012)
Jalali, M.S., Russell, B., Razak, S., Gordon, W.J.: EARS to cyber incidents in health care. J. Am. Med. Inf. Assoc. 26(1), 81–90 (2019)
Jürjens, J.: UMLsec: Extending UML for Secure Systems Development. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45800-X_32
van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In: Proceedings Fifth IEEE International Symposium on the Requirements Engineering, pp. 249–262. IEEE Computer Society, Toronto (2000)
van Lamsweerde, A., Letier, E.: From object orientation to goal orientation: a paradigm shift for requirements engineering. In: Wirsing, M., Knapp, A., Balsamo, S. (eds.) RISSEF 2002. LNCS, vol. 2941, pp. 325–340. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24626-8_23
Lin, L., Nuseibeh, B., Ince, D., Jackson, M., Moffett, J.: Introducing abuse frames for analyzing security requirements. J. Lightwave Technol. 371–372 (2003). IEEE Comput. Soc, Monterey Bay, CA, USA
Lodderstedt, T., Basin, D., Doser, J.: SecureUML: a UML-based modeling language for model-driven security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45800-X_33
McDermott, J., Fox, C.: Using abuse case models for security requirements analysis. In: Proceedings 15th Annual Computer Security Applications Conference (ACSAC 1999), pp. 55–64. IEEE Computer Society, Phoenix (1999)
McGlade, D., Scott-Hayward, S.: ML-based cyber incident detection for Electronic Medical Record (EMR) systems. Smart Health 12, 3–23 (2019)
Mead, N.R., Stehney, T.: Security quality requirements engineering (SQUARE) methodology. ACM SIGSOFT Softw. Eng. Notes 30(4), 1 (2005)
Meland, P.H., Paja, E., Gjre, E.A., Paul, S., Dalpiaz, F., Giorgini, P.: Threat analysis in goal-oriented security requirements modelling. In: Computer Systems and Software Engineering: Concepts, Methodologies, Tools, and Applications, pp. 2025–2042. IGI Global (2018)
Mouratidis, H., Argyropoulos, N., Shei, S.: Security requirements engineering for cloud computing: the secure tropos approach. In: Karagiannis, D., Mayr, H., Mylopoulos, J. (eds.) Domain-Specific Conceptual Modeling, pp. 357–380. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39417-6_16
Mouratidis, H., Giorgini, P.: Secure tropos: a security-oriented extension of the tropos methodology. Int. J. Softw. Eng. Knowl. Eng. 17(02), 285–309 (2007)
Mwiki, H., Dargahi, T., Dehghantanha, A., Choo, K.-K.R.: Analysis and triage of advanced hacking groups targeting western countries critical national infrastructure: APT28, RED October, and Regin. In: Gritzalis, D., Theocharidou, M., Stergiopoulos, G. (eds.) Critical Infrastructure Security and Resilience. ASTSA, pp. 221–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-00024-0_12
Pavlidis, M., Islam, S., Mouratidis, H.: A CASE tool to support automated modelling and analysis of security requirements, based on secure tropos. In: Nurcan, S. (ed.) CAiSE Forum 2011. LNBIP, vol. 107, pp. 95–109. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29749-6_7
Pavlidis, M., Islam, S., Mouratidis, H., Kearney, P.: Modeling trust relationships for developing trustworthy information systems. Int. J. Inf. Syst. Model. Des. 5(1), 25–48 (2014)
Pavlidis, M., Mouratidis, H., Panaousis, E., Argyropoulos, N.: Selecting security mechanisms in secure tropos. In: Lopez, J., Fischer-Hübner, S., Lambrinoudakis, C. (eds.) TrustBus 2017. LNCS, vol. 10442, pp. 99–114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64483-7_7
Ransford, B., Clark, S.S., Kune, D.F., Fu, K., Burleson, W.P.: Design Challenges for Secure Implantable Medical Devices. In: Burleson, W., Carrara, S. (eds.) Security and Privacy for Implantable Medical Devices, pp. 157–173. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-1674-6_7
Ross, R., Graubart, R., Bodeau, D., McQuaid, R.: Systems Security Engineering Cyber Resiliency Considerations for the Engineering of Trustworthy Secure Systems. Technical report, NIST (2018)
Schumacher, M.: Toward a security core ontology. In: Security Engineering with Patterns: Origins, Theoretical Models, and New Applications, pp. 87–96. no. 2754, LNCS, Springer, New York (2003). https://doi.org/10.1007/b11930
Sindre, G., Firesmith, D.G., Opdahl, A.L.: A reuse-based approach to determining security requirements. Requirements Eng. 10, 34–44 (2004)
Sittig, D., Singh, H.: A socio-technical approach to preventing, mitigating, and recovering from ransomware attacks. Appl. Clin. Inf. 07(02), 624–632 (2016)
Wiant, T.L.: Information security policy’s impact on reporting security incidents. Comput. Secur. 24(6), 448–459 (2005)
Williams, P.A.H.: Is cyber resilience in medical practice security achievable? In: Proceedings of the 1st International Cyber Resilience Conference, pp. 105–111. Edith Cowan University, Perth (2010)
Yu, E.S.K.: Modeling strategic relationships for process reengineering, Ph.D. thesis, University of Toronto, Canada (1995)
Jiang, Z., Pajic, M., Mangharam, R.: Cyberphysical modeling of implantable cardiac medical devices. Proc. IEEE 100(1), 122–137 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Athinaiou, M., Mouratidis, H., Fotis, T., Pavlidis, M. (2020). A Conceptual Redesign of a Modelling Language for Cyber Resiliency of Healthcare Systems. In: Katsikas, S., et al. Computer Security. CyberICPS SECPRE SPOSE ADIoT 2019 2019 2019 2019. Lecture Notes in Computer Science(), vol 11980. Springer, Cham. https://doi.org/10.1007/978-3-030-42048-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-42048-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-42047-5
Online ISBN: 978-3-030-42048-2
eBook Packages: Computer ScienceComputer Science (R0)