[go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12009))

Abstract

LGE CMR is an efficient technology for detecting infarcted myocardium. An efficient and objective ventricle segmentation method in LGE can benefit the location of the infarcted myocardium. In this paper, we proposed an automatic framework for LGE image segmentation. There are just 5 labeled LGE volumes with about 15 slices of each volume. We adopted histogram match, an invariant of rotation registration method, on the other labeled modalities to achieve effective augmentation of the training data. A CNN segmentation model was trained based on the augmented training data by leave-one-out strategy. The predicted result of the model followed a connected component analysis for each class to remain the largest connected component as the final segmentation result. Our model was evaluated by the 2019 Multi-sequence Cardiac MR Segmentation Challenge. The mean testing result of 40 testing volumes on Dice score, Jaccard score, Surface distance, and Hausdorff distance is 0.8087, 0.6976, 2.8727 mm, and 15.6387 mm, respectively. The experiment result shows a satisfying performance of the proposed framework. Code is available at https://github.com/Suiiyu/MS-CMR2019.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://zmiclab.github.io/mscmrseg19/.

References

  1. Kim, R., et al.: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19), 1992–2002 (1999)

    Article  Google Scholar 

  2. Dastidar, A., et al.: Coronary artery disease imaging: what is the role of magnetic resonance imaging. Dialogues Cardiovasc. Med. 21, 267–276 (2016)

    Google Scholar 

  3. Kurzendorfer, T., et al.: Fully automatic segmentation of left ventricular anatomy in 3-D LGE-MRI. Comput. Med. Imaging Graph. 59, 13–27 (2017)

    Article  Google Scholar 

  4. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2017)

    Article  Google Scholar 

  5. Duan, J., et al.: Deep nested level sets: fully automated segmentation of cardiac MR images in patients with pulmonary hypertension. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 595–603. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_68

    Chapter  Google Scholar 

  6. Khened, M., Alex, V., Krishnamurthi, G.: Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 140–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_15

    Chapter  Google Scholar 

  7. Duan, J., et al.: Automatic 3D bi-ventricular segmentation of cardiac images by a shape-constrained multi-task deep learning approach. arXiv preprint. arXiv:1808.08578 (2018)

  8. Zhuang, X.: Multivariate mixture model for cardiac segmentation from multi-sequence MRI. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 581–588. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_67

    Chapter  Google Scholar 

  9. Zhuang, X.: Multivariate mixture model for myocardial segmentation combining multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 41, 2933–2946 (2018). https://doi.org/10.1109/tpami.2018.2869576

    Article  Google Scholar 

  10. Ma, C., et al.: Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images. IEEE Trans. Med. Imaging 37(8), 1943–1954 (2018)

    Article  Google Scholar 

  11. Kayalibay, B., et al.: CNN-based segmentation of medical imaging data. arXiv:1701.03056 (2017)

  12. Dong, S., et al.: VoxelAtlasGAN: 3D left ventricle segmentation on echocardiography with atlas guided generation and voxel-to-voxel discrimination. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 622–629. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_71

    Chapter  Google Scholar 

  13. Luo, G., et al.: Multi-views fusion CNN for left ventricular volumes estimation on cardiac MR images. IEEE Trans. Biomed. Eng. 65(9), 1924–1934 (2017)

    Article  Google Scholar 

  14. Wang, L., et al.: Correction for variations in MRI scanner sensitivity in brain studies with histogram matching. Magn. Reson. Med. 39, 322–327 (1998)

    Article  Google Scholar 

  15. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key R&D Program of China under Grant 2017YFC0113000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuanquan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Wang, W., Wang, K., Ye, C., Luo, G. (2020). An Automatic Cardiac Segmentation Framework Based on Multi-sequence MR Image. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges. STACOM 2019. Lecture Notes in Computer Science(), vol 12009. Springer, Cham. https://doi.org/10.1007/978-3-030-39074-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39074-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39073-0

  • Online ISBN: 978-3-030-39074-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics