[go: up one dir, main page]

Skip to main content

Mathematical Foundations in Visualization

  • Chapter
  • First Online:
Foundations of Data Visualization

Abstract

Mathematical concepts and tools have shaped the field of visualization in fundamental ways and played a key role in the development of a large variety of visualization techniques. In this chapter, we sample the visualization literature to provide a taxonomy of the usage of mathematics in visualization and to identify a fundamental set of mathematics that should be taught to students as part of an introduction to contemporary visualization research. Within the scope of this chapter, we are unable to provide a full review of all mathematical foundations of visualization; rather, we identify a number of concepts that are useful in visualization, explain their significance, and provide references for further reading. We assume the reader has basic knowledge of linear algebra [90], multivariate calculus [89], statistics, combinatorics, and stochastics [39]. Other topics not covered in this chapter, such as image analysis [88], computer graphics [86], signal processing [41], computational geometry [2], geometric modeling, mesh generation, computer-aided geometric design [35, 106], and numerics [76] can be found in well-established textbooks. More advanced topics such as information theory, dimension reduction, and kernel methods are discussed in other parts of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amann, H.: Ordinary Differential Equations: An Introduction to Nonlinear Analysis. Studies in Mathematics, vol. 13. Walter de Gruyter, Berlin (2011). https://doi.org/10.1515/9783110853698

  2. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry, Algorithms and Applications, 3rd edn. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-77974-2

  3. Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-18245-7

  4. Böttger, J., Schäfer, A., Lohmann, G., Villringer, A., Margulies, D.S.: Three-dimensional mean-shift edge bundling for the visualization of functional connectivity in the brain. IEEE Trans. Vis. Comput. Graph. 20(3), 471–480 (2014). https://doi.org/10.1109/TVCG.2013.114

    Article  Google Scholar 

  5. Broadbent, A.: Calculation from the original experimental data of the CIE 1931 RGB standard observer spectral chromaticity coordinates and color matching functions. Québec, Canada, Département de génie chimique, Université de Sherbrooke (2008)

    Google Scholar 

  6. Brun, A., Knutsson, H., Park, H.J., Shenton, M.E., Westin, C.F.: Clustering fiber traces using normalized cuts. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) Medical Image Computing and Computer-Assisted Intervention, pp. 368–375. Springer, Berlin (2004). https://doi.org/10.1007/b100265

  7. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511543241

  8. Bujack, R., Hotz, I., Scheuermann, G., Hitzer, E.: Moment invariants for 2D flow fields via normalization in detail. IEEE Trans. Vis. Comput. Graph. 21(8), 916–929 (2015). https://doi.org/10.1109/TVCG.2014.2369036

    Article  Google Scholar 

  9. Bujack, R., Turton, T.L., Samsel, F., Ware, C., Rogers, D.H., Ahrens, J.: The good, the bad, and the ugly: a theoretical framework for the assessment of continuous colormaps. IEEE Trans. Vis. Comput. Graph. 24(1), 923–933 (2018). https://doi.org/10.1109/TVCG.2017.2743978

    Article  Google Scholar 

  10. Büring, H.: Eigenschaften des farbenraumes nach din 6176 (din99-formel) und seine bedeutung für die industrielle anwendung. In: Proceedings of 8th Workshop Farbbildverarbeitung der German Color Group, pp. 11–17 (2002)

    Google Scholar 

  11. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2016). https://doi.org/10.1002/9781119121534

  12. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. 24(2), 75–94 (2003). https://doi.org/10.1016/S0925-7721(02)00093-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2013). https://doi.org/10.1016/j.eswa.2012.07.021

    Article  Google Scholar 

  14. Chen, C., Wang, C., Ma, K., Wittenberg, A.T.: Static correlation visualization for large time-varying volume data. In: IEEE Pacific Visualization Symposium, pp. 27–34 (2011). https://doi.org/10.1109/PACIFICVIS.2011.5742369

  15. Coddington, E.A.: An Introduction to Ordinary Differential Equations. Courier Corporation, Chelmsford (2012)

    MATH  Google Scholar 

  16. Coffin, J.G.: Vector Analysis: An Introduction to Vector-Methods and Their Various Applications to Physics and Mathematics. Wiley, New York (1911)

    MATH  Google Scholar 

  17. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret. Comput. Geom. 37(1), 103–120 (2007). https://doi.org/10.1007/s00454-006-1276-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Correa, C.D., Lindstrom, P.: Towards robust topology of sparsely sampled data. Trans. Comput. Graph. Vis. 17(12), 1852–1861 (2011). https://doi.org/10.1109/TVCG.2011.245

    Article  Google Scholar 

  19. Desbrun, M., Kanso, E., Tong, Y.: Discrete differential forms for computational modeling. In: ACM SIGGRAPH 2006 Courses, pp. 39–54. ACM (2006). https://doi.org/10.1145/1198555.1198666

  20. Desbrun, M., Polthier, K., Schröder, P., Stern, A.: Discrete differential geometry. In: ACM SIGGRAPH 2006 Courses, p. 1. ACM (2006)

    Google Scholar 

  21. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999). https://doi.org/10.1137/S0036144599352836

    Article  MathSciNet  MATH  Google Scholar 

  22. Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2001). https://doi.org/10.1017/CBO9780511530067

  23. Edelsbrunner, H., Harer, J.: Jacobi sets of multiple Morse functions. In: Cucker, F., DeVore, R., Olver, P., Süli, E. (eds.) Foundations of Computational Mathematics, Minneapolis 2002, pp. 37–57. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  24. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010). https://doi.org/10.1090/mbk/069

  25. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale complexes for piecewise linear 3-manifolds. In: Proceedings of the 19th ACM Symposium on Computational Geometry, pp. 361–370 (2003). https://doi.org/10.1145/777792.777846

  26. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Local and global comparison of continuous functions. In: IEEE Visualization, pp. 275–280 (2004). https://doi.org/10.1109/VISUAL.2004.68

  27. Edelsbrunner, H., Harer, J., Patel, A.K.: Reeb spaces of piecewise linear mappings. In: Proceedings of the 24th Annual Symposium on Computational Geometry, pp. 242–250. ACM (2008). https://doi.org/10.1145/1377676.1377720

  28. Edelsbrunner, H., Harer, J., Zomorodian, A.J.: Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discret. Comput. Geom. 30, 87–107 (2003). https://doi.org/10.1007/s00454-003-2926-5

    Article  MathSciNet  MATH  Google Scholar 

  29. Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification. Discret. Comput. Geom. 28, 511–533 (2002). https://doi.org/10.1007/s00454-002-2885-2

    Article  MathSciNet  MATH  Google Scholar 

  30. Edelsbrunner, H., Morozov, D.: Persistent Homology: Theory and Practice. European Congress of Mathematics (2012). https://doi.org/10.4171/120-1/3

  31. Edelsbrunner, H., Morozov, D.: Persistent homology. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry. Discrete Mathematics and Its Applications, Chap. 24. CRC Press LLC, Boca Raton (2017)

    Google Scholar 

  32. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  33. Estivill-Castro, V.: Why so many clustering algorithms: a position paper. ACM SIGKDD Explor. Newsl. 4(1), 65–75 (2002). https://doi.org/10.1145/568574.568575

    Article  Google Scholar 

  34. Fairman, H.S., Brill, M.H., Hemmendinger, H., et al.: How the CIE 1931 color-matching functions were derived from wright-guild data. Color Res. Appl. 22(1), 11–23 (1997). https://doi.org/10.1002/(SICI)1520-6378(199702)22:111::AID-COL43.0.CO;2-7

    Article  Google Scholar 

  35. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide. The Morgan Kaufmann Series in Computer Graphics, 5th edn. Morgan Kaufmann Publishers, Burlington (2002)

    Google Scholar 

  36. Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  37. Forman, R.: A user’s guide to discrete Morse theory. Séminaire Lotharingien de Combinatoire 48, (2002)

    Google Scholar 

  38. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Biol. 18(3), 259–278 (1969). https://doi.org/10.2307/2412323

    Article  Google Scholar 

  39. Georgii, H.O.: Stochastics: Introduction to Probability and Statistics. De Gruyter, Berlin (2008). https://doi.org/10.1515/9783110293609

  40. Ghrist, R.: Three examples of applied and computational homology. Nieuw Archief voor Wiskunde (The Amsterdam Archive, Special issue on the occasion of the fifth European Congress of Mathematics ) pp. 122–125 (2008)

    Google Scholar 

  41. Glassner, A.S.: Principles of Digital Image Synthesis. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann Publishers Inc., Burlington (1995)

    Google Scholar 

  42. Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants. Graduate Texts in Mathematics, vol 255. Springer, Berlin (2009)

    Google Scholar 

  43. Gosink, L., Anderson, J., Bethel, W., Joy, K.: Variable interactions in query-driven visualization. IEEE Trans. Vis. Comput. Graph. 13(6), 1400–1407 (2007). https://doi.org/10.1109/TVCG.2007.70519

    Article  Google Scholar 

  44. Grassmann, H.: Zur Theorie der Farbenmischung. Ann. Phys. 165(5), 69–84 (1853). https://doi.org/10.1002/andp.18531650505

    Article  Google Scholar 

  45. Guild, J.: The colorimetric properties of the spectrum. Philos. Trans. R. Soc. Lond. Ser. A 230, 149–187 (1932). https://doi.org/10.1098/rsta.1932.0005

  46. Hansen, C.D., Chen, M., Johnson, C.R., Kaufman, A.E., Hagen, H. (eds.): Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization. Mathematics and Visualization. Springer, Berlin (2014)

    MATH  Google Scholar 

  47. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  48. Huertas, R., Melgosa, M., Oleari, C.: Performance of a color-difference formula based on OSA-UCS space using small-medium color differences. JOSA A 23(9), 2077–2084 (2006)

    Article  Google Scholar 

  49. International Commission on Illumination: Colorimetry. CIE technical report. Commission Internationale de l’Eclairage (2004)

    Google Scholar 

  50. Ip, C.Y., Varshney, A., JaJa, J.: Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms. IEEE Trans. Vis. Comput. Graph. 18(12), 2355–2363 (2012). https://doi.org/10.1109/TVCG.2012.231

    Article  Google Scholar 

  51. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999). https://doi.org/10.1145/331499.331504

    Article  Google Scholar 

  52. James, I.M. (ed.): History of Topology. Elsevier B.V, Amsterdam (1999)

    MATH  Google Scholar 

  53. Jankowai, J., Hotz, I.: Feature level-sets: Generalizing iso-surfaces to multi-variate data. IEEE Trans. Vis. Comput. Graph. pp. 1–1 (2018). https://doi.org/10.1109/TVCG.2018.2867488

  54. Judd, D.B.: Ideal color space: curvature of color space and its implications for industrial color tolerances. Palette 29(21–28), 4–25 (1968)

    Google Scholar 

  55. Judd, D.B.: Ideal color space. Color. Eng. 8(2), 37 (1970)

    Google Scholar 

  56. Jungnickel, D.: Graphs, Networks and Algorithms. Algorithms and Computation in Mathematics, 4th edn. Springer, Berlin (2012)

    MATH  Google Scholar 

  57. Kasten, J., Reininghaus, J., Hotz, I., Hege, H.C., Noack, B.R., Daviller, G., Morzynski, M.: Acceleration feature points of unsteady shear flows. Arch. Mech. 68(1), 55–80 (2016)

    MATH  Google Scholar 

  58. Kindlmann, G., Scheidegger, C.: An algebraic process for visualization design. IEEE Trans. Vis. Comput. Graph. 20(12) (2014). https://doi.org/10.1109/TVCG.2014.2346325

  59. Kratz, A., Auer, C., Stommel, M., Hotz, I.: Visualization and analysis of second-order tensors: Moving beyond the symmetric positive-definite case. Comput. Graph. Forum - State Art Rep. 32(1), 49–74 (2013). https://doi.org/10.1111/j.1467-8659.2012.03231.x

  60. Kratz, A., Meyer, B., Hotz, I.: A visual approach to analysis of stress tensor fields. In: Hagen, H. (ed.) Scientific Visualization: Interactions, Features, Metaphors. Dagstuhl Follow-Ups, vol. 2, pp. 188–211. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2011). https://doi.org/10.4230/DFU.Vol2.SciViz.2011.188

  61. Kühnel, W.: Differential Geometry: Curves - Surfaces - Manifolds. Student Mathematical Library. American Mathematical Society, Providence (2015). https://doi.org/10.1090/stml/077

  62. Lamb, E.: What We Talk About When We Talk About Holes. Scientific American Blog Network (2014)

    Google Scholar 

  63. Liu, S., Maljovec, D., Wang, B., Bremer, P.T., Pascucci, V.: Visualizing high-dimensional data: advances in the past decade. IEEE Trans. Vis. Comput. Graph. 23(3), 1249–1268 (2017). https://doi.org/10.1109/TVCG.2016.2640960

    Article  Google Scholar 

  64. Luo, M.R., Cui, G., Rigg, B.: The development of the cie 2000 colour-difference formula: Ciede 2000. Color Res. Appl. 26(5), 340–350 (2001). https://doi.org/10.1002/col.1049

    Article  Google Scholar 

  65. Mahy, M., Eycken, L., Oosterlinck, A.: Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV. Color Res. Appl. 19(2), 105–121 (1994). https://doi.org/10.1111/j.1520-6378.1994.tb00070.x

    Article  Google Scholar 

  66. Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations: An Introduction. Cambridge University Press, Cambridge (2005). https://doi.org/10.1017/CBO9780511812248

  67. Munkres, J.R.: Elements of Algebraic Topology. CRC Press, Taylor & Francis Group, Boca Raton (1984). https://doi.org/10.1201/9780429493911

  68. Munzner, T.: Visualization Analysis and Design. CRC Press, Taylor & Francis Group, Boca Raton (2014). https://doi.org/10.1201/b17511

  69. Nagaraj, S., Natarajan, V.: Simplification of Jacobi sets. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds.) Topological Data Analysis and Visualization: Theory, Algorithms and Applications, Mathematics and Visualization, pp. 91–102. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-15014-2_8

  70. O’Connor, J.J., Robertson, E.F.: A History of Topology. MacTutor History of Mathematics (1996)

    Google Scholar 

  71. Peacock, T., Froyland, G., Haller, G.: Introduction to focus issue: objective detection of coherent structures. Chaos 25, (2015). https://doi.org/10.1063/1.4928894

  72. Peikert, R., Roth, M.: The “parallel vectors” operator - a vector field visualization primitive. Proc. IEEE Vis. 14(16), 263–270 (1999). https://doi.org/10.1109/VISUAL.1999.809896

  73. Polthier, K., Schmies, M.: Straightest geodesics on polyhedral surfaces. In: Hege, H.C., Polthier, K. (eds.) Mathematical Visualization, p. 391. Springer, Berlin (1998). https://doi.org/10.1007/978-3-662-03567-2_11

  74. Post, F.H., Post, F.J., Walsum, T.V., Silver, D.: Iconic techniques for feature visualization. In: Proceedings of the 6th Conference on Visualization, p. 288. IEEE Computer Society, Washington, D.C. (1995)

    Google Scholar 

  75. Potter, K.: The visualization of uncertainty. Ph.D. thesis, University of Utah (2010)

    Google Scholar 

  76. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  77. Raj, M.: Depth-based visualizations for ensemble data and graphs. Ph.D. thesis, University of Utah (2018)

    Google Scholar 

  78. Raj Pant, D., Farup, I.: Riemannian formulation and comparison of color difference formulas. Color Res. Appl. 37(6), 429–440 (2012). https://doi.org/10.1002/col.20710

    Article  Google Scholar 

  79. Reeb, G.: Sur les points singuliers d’une forme de pfaff completement intergrable ou d’une fonction numerique. Comptes Rendus Acad. Sci. Paris 222, 847–849 (1946)

    MATH  Google Scholar 

  80. Renardy, M., Rogers, R.C.: An introduction to Partial Differential Equations, vol. 13. Springer Science & Business Media, Berlin (2006). https://doi.org/10.1007/b97427

  81. Resnikoff, H.L.: Differential geometry and color perception. J. Math. Biol. 1(2), 97–131 (1974). https://doi.org/10.1007/BF00275798

    Article  MathSciNet  MATH  Google Scholar 

  82. Schrödinger, E.: Grundlinien einer Theorie der Farbenmetrik im Tagessehen. Ann. Phys. 368(22), 481–520 (1920). https://doi.org/10.1002/andp.19203682102

    Article  Google Scholar 

  83. Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 42(3), 19:1–19:21 (2017). https://doi.org/10.1145/3068335

  84. Schwichtenberg, J.: Physics from Symmetry. Undergraduate Lecture Notes in Physics, 2nd edn. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-19201-7

  85. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000). https://doi.org/10.1109/34.868688

    Article  Google Scholar 

  86. Shirley, P.: Fundamentals of Computer Graphics. AK Peters Ltd, Natick (2005)

    Book  Google Scholar 

  87. Snider, A.D., Davis, H.F.: Introduction to Vector Analysis, 7th edn. William C. Brown, Lowa (1987)

    MATH  Google Scholar 

  88. Sonka, M., Hlavac, V., Bohle, R.: Image Processing, Analysis and and Machine Vision, 3rd edn. Thomson, Stamford (2008)

    Google Scholar 

  89. Steward, J.: Multivariate Calculus, 7th edn. Brooks/Cole CENGAGE Learning (2019)

    Google Scholar 

  90. Strang, G.: Introduction to Linear Algebra, 5th edn. Wellesley-Cambridge Press, Cambridge (2016)

    MATH  Google Scholar 

  91. Suthar, N., jeet Rajput, I., kumar Gupta, V.: A technical survey on DBSCAN clustering algorithm. Int. J. Sci. Eng. Res. 4(5) (2013)

    Google Scholar 

  92. Telea, A.C.: Data Visualization: Principles and Practice, 2nd edn. AK Peters Ltd, Natick (2015)

    Google Scholar 

  93. Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press, Cheshire (2001)

    Google Scholar 

  94. Urban, P., Rosen, M.R., Berns, R.S., Schleicher, D.: Embedding non-Euclidean color spaces into euclidean color spaces with minimal isometric disagreement. J. Opt. Soc. Am. A 24(6), 1516–1528 (2007). https://doi.org/10.1364/JOSAA.24.001516

    Article  Google Scholar 

  95. Von Helmholtz, H.: Handbuch der physiologischen Optik, vol. 9. Voss (1867)

    Google Scholar 

  96. Wang, J., Hazarika, S., Li, C., Shen, H.W.: Visualization and visual analysis of ensemble data: a survey. IEEE Trans. Vis. Comput. Graph. (2018). https://doi.org/10.1109/TVCG.2018.2853721

    Article  Google Scholar 

  97. Wardetzky, M., Mathur, S., Kälberer, F., Grinspun, E.: Discrete laplace operators: no free lunch. In: Proceedings of the Eurographics Symposium on Geometry Processing, pp. 33–37 (2007)

    Google Scholar 

  98. Weyl, H.: Symmetry. Princeton University Press, Princeton (1952)

    Book  Google Scholar 

  99. Whitaker, R.T., Mirzargar, M., Kirby, R.M.: Contour boxplots: a method for characterizing uncertainty in feature sets from simulation ensembles. IEEE Trans. Vis. Comput. Graph. 19(12), 2713–2722 (2013). https://doi.org/10.1109/TVCG.2013.143

    Article  Google Scholar 

  100. Wikipedia Contributors: Topology. Wikipedia, The Free Encyclopedia (2018)

    Google Scholar 

  101. Wong, P.C., Foote, H., Leung, R., Adams, D., Thomas, J.: Data signatures and visualization of scientific data sets. IEEE Comput. Graph. Appl. 20(2), 12–15 (2000). https://doi.org/10.1109/38.824451

    Article  Google Scholar 

  102. Woodring, J., Shen, H.: Multiscale time activity data exploration via temporal clustering visualization spreadsheet. IEEE Trans. Vis. Comput. Graph. 15(1), 123–137 (2009). https://doi.org/10.1109/TVCG.2008.69

    Article  Google Scholar 

  103. Wu, M.Q.Y., Faris, R., Ma, K.: Visual exploration of academic career paths. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 779–786 (2013). https://doi.org/10.1145/2492517.2492638

  104. Wyszecki, G., Stiles, W.S.: Color Science, vol. 8. Wiley, New York (1982)

    Google Scholar 

  105. Zeyen, M., Post, T., Hagen, H., Ahrens, J., Rogers, D., Bujack, R.: Color interpolation for non-Euclidean color spaces. In: IEEE Scientific Visualization Conference Short Papers. IEEE (2018)

    Google Scholar 

  106. Zhang, Y.J.: Geometric Modelng and Mesh Generation from Scanned Images. CRC Press, Taylor & Francis Group, Boca Raton (2016)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the organizers of the Dagstuhl Seminar 18041 in January 2018, entitled “Foundations of Data Visualization”. Bei Wang is partially supported by NSF IIS-1910733, DBI-1661375, and IIS-1513616. Roxana Bujack is partially supported by the Laboratory Directed Research and Development (LDRD) program of the Los Alamos National Laboratory (LANL) under project number 20190143ER. Ingrid Hotz is supported through Swedish e-Science Research Center (SeRC) and the ELLIIT environment for strategic research in Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Hotz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hotz, I., Bujack, R., Garth, C., Wang, B. (2020). Mathematical Foundations in Visualization. In: Chen, M., Hauser, H., Rheingans, P., Scheuermann, G. (eds) Foundations of Data Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-34444-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34444-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34443-6

  • Online ISBN: 978-3-030-34444-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics