Abstract
Mathematical concepts and tools have shaped the field of visualization in fundamental ways and played a key role in the development of a large variety of visualization techniques. In this chapter, we sample the visualization literature to provide a taxonomy of the usage of mathematics in visualization and to identify a fundamental set of mathematics that should be taught to students as part of an introduction to contemporary visualization research. Within the scope of this chapter, we are unable to provide a full review of all mathematical foundations of visualization; rather, we identify a number of concepts that are useful in visualization, explain their significance, and provide references for further reading. We assume the reader has basic knowledge of linear algebra [90], multivariate calculus [89], statistics, combinatorics, and stochastics [39]. Other topics not covered in this chapter, such as image analysis [88], computer graphics [86], signal processing [41], computational geometry [2], geometric modeling, mesh generation, computer-aided geometric design [35, 106], and numerics [76] can be found in well-established textbooks. More advanced topics such as information theory, dimension reduction, and kernel methods are discussed in other parts of the book.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amann, H.: Ordinary Differential Equations: An Introduction to Nonlinear Analysis. Studies in Mathematics, vol. 13. Walter de Gruyter, Berlin (2011). https://doi.org/10.1515/9783110853698
de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry, Algorithms and Applications, 3rd edn. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-77974-2
Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-18245-7
Böttger, J., Schäfer, A., Lohmann, G., Villringer, A., Margulies, D.S.: Three-dimensional mean-shift edge bundling for the visualization of functional connectivity in the brain. IEEE Trans. Vis. Comput. Graph. 20(3), 471–480 (2014). https://doi.org/10.1109/TVCG.2013.114
Broadbent, A.: Calculation from the original experimental data of the CIE 1931 RGB standard observer spectral chromaticity coordinates and color matching functions. Québec, Canada, Département de génie chimique, Université de Sherbrooke (2008)
Brun, A., Knutsson, H., Park, H.J., Shenton, M.E., Westin, C.F.: Clustering fiber traces using normalized cuts. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) Medical Image Computing and Computer-Assisted Intervention, pp. 368–375. Springer, Berlin (2004). https://doi.org/10.1007/b100265
Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511543241
Bujack, R., Hotz, I., Scheuermann, G., Hitzer, E.: Moment invariants for 2D flow fields via normalization in detail. IEEE Trans. Vis. Comput. Graph. 21(8), 916–929 (2015). https://doi.org/10.1109/TVCG.2014.2369036
Bujack, R., Turton, T.L., Samsel, F., Ware, C., Rogers, D.H., Ahrens, J.: The good, the bad, and the ugly: a theoretical framework for the assessment of continuous colormaps. IEEE Trans. Vis. Comput. Graph. 24(1), 923–933 (2018). https://doi.org/10.1109/TVCG.2017.2743978
Büring, H.: Eigenschaften des farbenraumes nach din 6176 (din99-formel) und seine bedeutung für die industrielle anwendung. In: Proceedings of 8th Workshop Farbbildverarbeitung der German Color Group, pp. 11–17 (2002)
Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2016). https://doi.org/10.1002/9781119121534
Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. 24(2), 75–94 (2003). https://doi.org/10.1016/S0925-7721(02)00093-7
Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2013). https://doi.org/10.1016/j.eswa.2012.07.021
Chen, C., Wang, C., Ma, K., Wittenberg, A.T.: Static correlation visualization for large time-varying volume data. In: IEEE Pacific Visualization Symposium, pp. 27–34 (2011). https://doi.org/10.1109/PACIFICVIS.2011.5742369
Coddington, E.A.: An Introduction to Ordinary Differential Equations. Courier Corporation, Chelmsford (2012)
Coffin, J.G.: Vector Analysis: An Introduction to Vector-Methods and Their Various Applications to Physics and Mathematics. Wiley, New York (1911)
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret. Comput. Geom. 37(1), 103–120 (2007). https://doi.org/10.1007/s00454-006-1276-5
Correa, C.D., Lindstrom, P.: Towards robust topology of sparsely sampled data. Trans. Comput. Graph. Vis. 17(12), 1852–1861 (2011). https://doi.org/10.1109/TVCG.2011.245
Desbrun, M., Kanso, E., Tong, Y.: Discrete differential forms for computational modeling. In: ACM SIGGRAPH 2006 Courses, pp. 39–54. ACM (2006). https://doi.org/10.1145/1198555.1198666
Desbrun, M., Polthier, K., Schröder, P., Stern, A.: Discrete differential geometry. In: ACM SIGGRAPH 2006 Courses, p. 1. ACM (2006)
Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999). https://doi.org/10.1137/S0036144599352836
Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2001). https://doi.org/10.1017/CBO9780511530067
Edelsbrunner, H., Harer, J.: Jacobi sets of multiple Morse functions. In: Cucker, F., DeVore, R., Olver, P., Süli, E. (eds.) Foundations of Computational Mathematics, Minneapolis 2002, pp. 37–57. Cambridge University Press, Cambridge (2002)
Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010). https://doi.org/10.1090/mbk/069
Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale complexes for piecewise linear 3-manifolds. In: Proceedings of the 19th ACM Symposium on Computational Geometry, pp. 361–370 (2003). https://doi.org/10.1145/777792.777846
Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Local and global comparison of continuous functions. In: IEEE Visualization, pp. 275–280 (2004). https://doi.org/10.1109/VISUAL.2004.68
Edelsbrunner, H., Harer, J., Patel, A.K.: Reeb spaces of piecewise linear mappings. In: Proceedings of the 24th Annual Symposium on Computational Geometry, pp. 242–250. ACM (2008). https://doi.org/10.1145/1377676.1377720
Edelsbrunner, H., Harer, J., Zomorodian, A.J.: Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discret. Comput. Geom. 30, 87–107 (2003). https://doi.org/10.1007/s00454-003-2926-5
Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification. Discret. Comput. Geom. 28, 511–533 (2002). https://doi.org/10.1007/s00454-002-2885-2
Edelsbrunner, H., Morozov, D.: Persistent Homology: Theory and Practice. European Congress of Mathematics (2012). https://doi.org/10.4171/120-1/3
Edelsbrunner, H., Morozov, D.: Persistent homology. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry. Discrete Mathematics and Its Applications, Chap. 24. CRC Press LLC, Boca Raton (2017)
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press (1996)
Estivill-Castro, V.: Why so many clustering algorithms: a position paper. ACM SIGKDD Explor. Newsl. 4(1), 65–75 (2002). https://doi.org/10.1145/568574.568575
Fairman, H.S., Brill, M.H., Hemmendinger, H., et al.: How the CIE 1931 color-matching functions were derived from wright-guild data. Color Res. Appl. 22(1), 11–23 (1997). https://doi.org/10.1002/(SICI)1520-6378(199702)22:111::AID-COL43.0.CO;2-7
Farin, G.: Curves and Surfaces for CAGD: A Practical Guide. The Morgan Kaufmann Series in Computer Graphics, 5th edn. Morgan Kaufmann Publishers, Burlington (2002)
Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)
Forman, R.: A user’s guide to discrete Morse theory. Séminaire Lotharingien de Combinatoire 48, (2002)
Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Biol. 18(3), 259–278 (1969). https://doi.org/10.2307/2412323
Georgii, H.O.: Stochastics: Introduction to Probability and Statistics. De Gruyter, Berlin (2008). https://doi.org/10.1515/9783110293609
Ghrist, R.: Three examples of applied and computational homology. Nieuw Archief voor Wiskunde (The Amsterdam Archive, Special issue on the occasion of the fifth European Congress of Mathematics ) pp. 122–125 (2008)
Glassner, A.S.: Principles of Digital Image Synthesis. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann Publishers Inc., Burlington (1995)
Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants. Graduate Texts in Mathematics, vol 255. Springer, Berlin (2009)
Gosink, L., Anderson, J., Bethel, W., Joy, K.: Variable interactions in query-driven visualization. IEEE Trans. Vis. Comput. Graph. 13(6), 1400–1407 (2007). https://doi.org/10.1109/TVCG.2007.70519
Grassmann, H.: Zur Theorie der Farbenmischung. Ann. Phys. 165(5), 69–84 (1853). https://doi.org/10.1002/andp.18531650505
Guild, J.: The colorimetric properties of the spectrum. Philos. Trans. R. Soc. Lond. Ser. A 230, 149–187 (1932). https://doi.org/10.1098/rsta.1932.0005
Hansen, C.D., Chen, M., Johnson, C.R., Kaufman, A.E., Hagen, H. (eds.): Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization. Mathematics and Visualization. Springer, Berlin (2014)
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Huertas, R., Melgosa, M., Oleari, C.: Performance of a color-difference formula based on OSA-UCS space using small-medium color differences. JOSA A 23(9), 2077–2084 (2006)
International Commission on Illumination: Colorimetry. CIE technical report. Commission Internationale de l’Eclairage (2004)
Ip, C.Y., Varshney, A., JaJa, J.: Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms. IEEE Trans. Vis. Comput. Graph. 18(12), 2355–2363 (2012). https://doi.org/10.1109/TVCG.2012.231
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999). https://doi.org/10.1145/331499.331504
James, I.M. (ed.): History of Topology. Elsevier B.V, Amsterdam (1999)
Jankowai, J., Hotz, I.: Feature level-sets: Generalizing iso-surfaces to multi-variate data. IEEE Trans. Vis. Comput. Graph. pp. 1–1 (2018). https://doi.org/10.1109/TVCG.2018.2867488
Judd, D.B.: Ideal color space: curvature of color space and its implications for industrial color tolerances. Palette 29(21–28), 4–25 (1968)
Judd, D.B.: Ideal color space. Color. Eng. 8(2), 37 (1970)
Jungnickel, D.: Graphs, Networks and Algorithms. Algorithms and Computation in Mathematics, 4th edn. Springer, Berlin (2012)
Kasten, J., Reininghaus, J., Hotz, I., Hege, H.C., Noack, B.R., Daviller, G., Morzynski, M.: Acceleration feature points of unsteady shear flows. Arch. Mech. 68(1), 55–80 (2016)
Kindlmann, G., Scheidegger, C.: An algebraic process for visualization design. IEEE Trans. Vis. Comput. Graph. 20(12) (2014). https://doi.org/10.1109/TVCG.2014.2346325
Kratz, A., Auer, C., Stommel, M., Hotz, I.: Visualization and analysis of second-order tensors: Moving beyond the symmetric positive-definite case. Comput. Graph. Forum - State Art Rep. 32(1), 49–74 (2013). https://doi.org/10.1111/j.1467-8659.2012.03231.x
Kratz, A., Meyer, B., Hotz, I.: A visual approach to analysis of stress tensor fields. In: Hagen, H. (ed.) Scientific Visualization: Interactions, Features, Metaphors. Dagstuhl Follow-Ups, vol. 2, pp. 188–211. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2011). https://doi.org/10.4230/DFU.Vol2.SciViz.2011.188
Kühnel, W.: Differential Geometry: Curves - Surfaces - Manifolds. Student Mathematical Library. American Mathematical Society, Providence (2015). https://doi.org/10.1090/stml/077
Lamb, E.: What We Talk About When We Talk About Holes. Scientific American Blog Network (2014)
Liu, S., Maljovec, D., Wang, B., Bremer, P.T., Pascucci, V.: Visualizing high-dimensional data: advances in the past decade. IEEE Trans. Vis. Comput. Graph. 23(3), 1249–1268 (2017). https://doi.org/10.1109/TVCG.2016.2640960
Luo, M.R., Cui, G., Rigg, B.: The development of the cie 2000 colour-difference formula: Ciede 2000. Color Res. Appl. 26(5), 340–350 (2001). https://doi.org/10.1002/col.1049
Mahy, M., Eycken, L., Oosterlinck, A.: Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV. Color Res. Appl. 19(2), 105–121 (1994). https://doi.org/10.1111/j.1520-6378.1994.tb00070.x
Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations: An Introduction. Cambridge University Press, Cambridge (2005). https://doi.org/10.1017/CBO9780511812248
Munkres, J.R.: Elements of Algebraic Topology. CRC Press, Taylor & Francis Group, Boca Raton (1984). https://doi.org/10.1201/9780429493911
Munzner, T.: Visualization Analysis and Design. CRC Press, Taylor & Francis Group, Boca Raton (2014). https://doi.org/10.1201/b17511
Nagaraj, S., Natarajan, V.: Simplification of Jacobi sets. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds.) Topological Data Analysis and Visualization: Theory, Algorithms and Applications, Mathematics and Visualization, pp. 91–102. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-15014-2_8
O’Connor, J.J., Robertson, E.F.: A History of Topology. MacTutor History of Mathematics (1996)
Peacock, T., Froyland, G., Haller, G.: Introduction to focus issue: objective detection of coherent structures. Chaos 25, (2015). https://doi.org/10.1063/1.4928894
Peikert, R., Roth, M.: The “parallel vectors” operator - a vector field visualization primitive. Proc. IEEE Vis. 14(16), 263–270 (1999). https://doi.org/10.1109/VISUAL.1999.809896
Polthier, K., Schmies, M.: Straightest geodesics on polyhedral surfaces. In: Hege, H.C., Polthier, K. (eds.) Mathematical Visualization, p. 391. Springer, Berlin (1998). https://doi.org/10.1007/978-3-662-03567-2_11
Post, F.H., Post, F.J., Walsum, T.V., Silver, D.: Iconic techniques for feature visualization. In: Proceedings of the 6th Conference on Visualization, p. 288. IEEE Computer Society, Washington, D.C. (1995)
Potter, K.: The visualization of uncertainty. Ph.D. thesis, University of Utah (2010)
Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (1992)
Raj, M.: Depth-based visualizations for ensemble data and graphs. Ph.D. thesis, University of Utah (2018)
Raj Pant, D., Farup, I.: Riemannian formulation and comparison of color difference formulas. Color Res. Appl. 37(6), 429–440 (2012). https://doi.org/10.1002/col.20710
Reeb, G.: Sur les points singuliers d’une forme de pfaff completement intergrable ou d’une fonction numerique. Comptes Rendus Acad. Sci. Paris 222, 847–849 (1946)
Renardy, M., Rogers, R.C.: An introduction to Partial Differential Equations, vol. 13. Springer Science & Business Media, Berlin (2006). https://doi.org/10.1007/b97427
Resnikoff, H.L.: Differential geometry and color perception. J. Math. Biol. 1(2), 97–131 (1974). https://doi.org/10.1007/BF00275798
Schrödinger, E.: Grundlinien einer Theorie der Farbenmetrik im Tagessehen. Ann. Phys. 368(22), 481–520 (1920). https://doi.org/10.1002/andp.19203682102
Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 42(3), 19:1–19:21 (2017). https://doi.org/10.1145/3068335
Schwichtenberg, J.: Physics from Symmetry. Undergraduate Lecture Notes in Physics, 2nd edn. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-19201-7
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000). https://doi.org/10.1109/34.868688
Shirley, P.: Fundamentals of Computer Graphics. AK Peters Ltd, Natick (2005)
Snider, A.D., Davis, H.F.: Introduction to Vector Analysis, 7th edn. William C. Brown, Lowa (1987)
Sonka, M., Hlavac, V., Bohle, R.: Image Processing, Analysis and and Machine Vision, 3rd edn. Thomson, Stamford (2008)
Steward, J.: Multivariate Calculus, 7th edn. Brooks/Cole CENGAGE Learning (2019)
Strang, G.: Introduction to Linear Algebra, 5th edn. Wellesley-Cambridge Press, Cambridge (2016)
Suthar, N., jeet Rajput, I., kumar Gupta, V.: A technical survey on DBSCAN clustering algorithm. Int. J. Sci. Eng. Res. 4(5) (2013)
Telea, A.C.: Data Visualization: Principles and Practice, 2nd edn. AK Peters Ltd, Natick (2015)
Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press, Cheshire (2001)
Urban, P., Rosen, M.R., Berns, R.S., Schleicher, D.: Embedding non-Euclidean color spaces into euclidean color spaces with minimal isometric disagreement. J. Opt. Soc. Am. A 24(6), 1516–1528 (2007). https://doi.org/10.1364/JOSAA.24.001516
Von Helmholtz, H.: Handbuch der physiologischen Optik, vol. 9. Voss (1867)
Wang, J., Hazarika, S., Li, C., Shen, H.W.: Visualization and visual analysis of ensemble data: a survey. IEEE Trans. Vis. Comput. Graph. (2018). https://doi.org/10.1109/TVCG.2018.2853721
Wardetzky, M., Mathur, S., Kälberer, F., Grinspun, E.: Discrete laplace operators: no free lunch. In: Proceedings of the Eurographics Symposium on Geometry Processing, pp. 33–37 (2007)
Weyl, H.: Symmetry. Princeton University Press, Princeton (1952)
Whitaker, R.T., Mirzargar, M., Kirby, R.M.: Contour boxplots: a method for characterizing uncertainty in feature sets from simulation ensembles. IEEE Trans. Vis. Comput. Graph. 19(12), 2713–2722 (2013). https://doi.org/10.1109/TVCG.2013.143
Wikipedia Contributors: Topology. Wikipedia, The Free Encyclopedia (2018)
Wong, P.C., Foote, H., Leung, R., Adams, D., Thomas, J.: Data signatures and visualization of scientific data sets. IEEE Comput. Graph. Appl. 20(2), 12–15 (2000). https://doi.org/10.1109/38.824451
Woodring, J., Shen, H.: Multiscale time activity data exploration via temporal clustering visualization spreadsheet. IEEE Trans. Vis. Comput. Graph. 15(1), 123–137 (2009). https://doi.org/10.1109/TVCG.2008.69
Wu, M.Q.Y., Faris, R., Ma, K.: Visual exploration of academic career paths. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 779–786 (2013). https://doi.org/10.1145/2492517.2492638
Wyszecki, G., Stiles, W.S.: Color Science, vol. 8. Wiley, New York (1982)
Zeyen, M., Post, T., Hagen, H., Ahrens, J., Rogers, D., Bujack, R.: Color interpolation for non-Euclidean color spaces. In: IEEE Scientific Visualization Conference Short Papers. IEEE (2018)
Zhang, Y.J.: Geometric Modelng and Mesh Generation from Scanned Images. CRC Press, Taylor & Francis Group, Boca Raton (2016)
Acknowledgements
The authors would like to thank the organizers of the Dagstuhl Seminar 18041 in January 2018, entitled “Foundations of Data Visualization”. Bei Wang is partially supported by NSF IIS-1910733, DBI-1661375, and IIS-1513616. Roxana Bujack is partially supported by the Laboratory Directed Research and Development (LDRD) program of the Los Alamos National Laboratory (LANL) under project number 20190143ER. Ingrid Hotz is supported through Swedish e-Science Research Center (SeRC) and the ELLIIT environment for strategic research in Sweden.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Hotz, I., Bujack, R., Garth, C., Wang, B. (2020). Mathematical Foundations in Visualization. In: Chen, M., Hauser, H., Rheingans, P., Scheuermann, G. (eds) Foundations of Data Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-34444-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-34444-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34443-6
Online ISBN: 978-3-030-34444-3
eBook Packages: Computer ScienceComputer Science (R0)