[go: up one dir, main page]

Skip to main content

Completeness of Cyclic Proofs for Symbolic Heaps with Inductive Definitions

  • Conference paper
  • First Online:
Programming Languages and Systems (APLAS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11893))

Included in the following conference series:

Abstract

Separation logic is successful for software verification in both theory and practice. Decision procedure for symbolic heaps is one of the key issues. This paper proposes a cyclic proof system for symbolic heaps with general form of inductive definitions called cone inductive definitions, and shows its soundness and completeness. Cone inductive definitions are obtained from bounded-treewidth inductive definitions by imposing some restrictions for existentials, but they still include a wide class of recursive data structures. The completeness is proved by using a proof search algorithm and it also gives us a decision procedure for entailments of symbolic heaps with cone inductive definitions. The time complexity of the algorithm is nondeterministic double exponential. A prototype system for the algorithm has been implemented and experimental results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foundations for decision problems in separation logic with general inductive predicates. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 411–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54830-7_27

    Chapter  MATH  Google Scholar 

  2. Berardi, S., Tatsuta, M.: Classical system of Martin-Löf’s inductive definitions is not equivalent to cyclic proof system. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 301–317. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7_18

    Chapter  MATH  Google Scholar 

  3. Berardi, S., Tatsuta, M.: Equivalence of inductive definitions and cyclic proofs under arithmetic. In: Proceedings of LICS 2017, pp. 1–12 (2017)

    Google Scholar 

  4. Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 323–338. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87531-4_24

    Chapter  Google Scholar 

  5. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: Proceedings of POPL 2008, pp. 247–260 (2008)

    Article  Google Scholar 

  6. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30538-5_9

    Chapter  MATH  Google Scholar 

  7. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg (2005). https://doi.org/10.1007/11575467_5

    Chapter  Google Scholar 

  8. Brotherston, J.: Formalised inductive reasoning in the logic of bunched implications. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 87–103. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2_6

    Chapter  Google Scholar 

  9. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J. Logic Comput. 21(6), 1177–1216 (2011)

    Article  MathSciNet  Google Scholar 

  10. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs in separation logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 131–146. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6_12

    Chapter  MATH  Google Scholar 

  11. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35182-2_25

    Chapter  Google Scholar 

  12. Brotherston, J., Fuhs, C., Gorogiannis, N., Navarro Pérez, J.: A decision procedure for satisfiability in separation logic with inductive predicates. In: Proceedings of CSL-LICS 2014, Article 25 (2014)

    Google Scholar 

  13. Brotherston, J., Gorogiannis, N., Kanovich, M., Rowe, R.: Model checking for symbolic-heap separation logic with inductive predicates. In: Proceedings of POPL 2016, pp. 84–96 (2016)

    Google Scholar 

  14. Chin, W., David, C., Nguyen, H., Qin, S.: Automated verification of shape, size and bag properties via user-defined predicates in separation logic. Sci. Comput. Program. 77(9), 1006–1036 (2012)

    Article  Google Scholar 

  15. Chu, D., Jaffar, J., Trinh, M.: Automatic induction proofs of data-structures in imperative programs. In: Proceedings of PLDI 2015, pp. 457–466 (2015)

    Article  Google Scholar 

  16. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning in a fragment of separation logic. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 235–249. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_16

    Chapter  Google Scholar 

  17. Enea, C., Saveluc, V., Sighireanu, M.: Compositional invariant checking for overlaid and nested linked lists. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 129–148. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_9

    Chapter  MATH  Google Scholar 

  18. Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Compositional entailment checking for a fragment of separation logic. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 314–333. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12736-1_17

    Chapter  Google Scholar 

  19. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 21–38. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_2

    Chapter  Google Scholar 

  20. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation logic with tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 201–218. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_15

    Chapter  Google Scholar 

  21. Katelaan, J., Matheja, C., Zuleger, F.: Effective entailment checking for separation logic with inductive definitions. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 319–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_18

    Chapter  Google Scholar 

  22. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic modulo theories. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 90–106. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03542-0_7

    Chapter  Google Scholar 

  23. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_54

    Chapter  Google Scholar 

  24. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_47

    Chapter  Google Scholar 

  25. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Proceedings of Seventeenth Annual IEEE Symposium on Logic in Computer Science (LICS 2002), pp. 55–74 (2002)

    Google Scholar 

  26. Simpson, A.: Cyclic arithmetic is equivalent to Peano arithmetic. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 283–300. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7_17

    Chapter  Google Scholar 

  27. SL-COMP2014. https://www.irif.fr/~sighirea/slcomp14/

  28. SLS: Songbird+Lemma Synthesis. https://songbird-prover.github.io/lemma-synthesis/

  29. Ta, Q.-T., Le, T.C., Khoo, S.-C., Chin, W.-N.: Automated mutual explicit induction proof in separation logic. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 659–676. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_40

    Chapter  Google Scholar 

  30. Ta, Q., Le, T., Khoo, S., Chin, W.: Automated lemma synthesis in symbolic-heap separation logic. In: Proceedings of POPL 2018 (2018)

    Google Scholar 

  31. Tatsuta, M., Kimura, D.: Separation logic with monadic inductive definitions and implicit existentials. In: Feng, X., Park, S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 69–89. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26529-2_5

    Chapter  MATH  Google Scholar 

  32. Tatsuta, M., Nakazawa, K., Kimura, D.: Completeness of Cyclic Proofs for Symbolic Heaps (2018). https://arxiv.org/abs/1804.03938

  33. The Cyclist Framework and Provers. http://www.cyclist-prover.org/

Download references

Acknowledgments

We would like to thank Prof. Kazushige Terui for valuable discussions. This is partially supported by Core-to-Core Program (A. Advanced Research Networks) of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Tatsuta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tatsuta, M., Nakazawa, K., Kimura, D. (2019). Completeness of Cyclic Proofs for Symbolic Heaps with Inductive Definitions. In: Lin, A. (eds) Programming Languages and Systems. APLAS 2019. Lecture Notes in Computer Science(), vol 11893. Springer, Cham. https://doi.org/10.1007/978-3-030-34175-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34175-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34174-9

  • Online ISBN: 978-3-030-34175-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics