[go: up one dir, main page]

Skip to main content

Moving Objects Segmentation Based on DeepSphere in Video Surveillance

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11845))

Included in the following conference series:

  • 1599 Accesses

Abstract

Segmentation of moving objects from video sequences plays an important role in many computer vision applications. In this paper, we present a background subtraction approach based on deep neural networks. More specifically, we propose to employ and validate an unsupervised anomaly discovery framework called “DeepSphere” to perform foreground objects detection and segmentation in video sequences. DeepSphere is based on both deep autoencoders and hypersphere learning methods to isolate anomaly pollution and reconstruct normal behaviors in spatial and temporal context. We exploit the power of this framework and adjust it to perform foreground objects segmentation. We evaluate the performance of our proposed method on 9 surveillance videos from the Background Model Challenge (BMC 2012) dataset, and compare that with a standard subspace learning technique, Robust Principle Component Analysis (RPCA) as well as a Deep Probabilistic Background Model (DeepPBM). Experimental results show that our approach achieved successful results than other existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Shuigen W., Zhen C., and Hua D. Motion detection based on temporal difference method and optical flow field. In: Second International Symposium on Electronic Commerce and Security, pp. 85–88 (2009)

    Google Scholar 

  2. Mahraz, M.A., Riffi, J., Tairi, H.: Motion estimation using the fast and adaptive bidimensional empirical mode decomposition. J. Real-Time Image Process. 9(3), 491–501 (2014)

    Article  Google Scholar 

  3. Candès, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? Int. J. ACM 58(3), 11 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Wren, C., Azarbayejani, A.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19, 780–785 (1997)

    Article  Google Scholar 

  5. Pulgarin-Giraldo, J., Alvarez-Meza, A., Insuasti-Ceballos, D., Bouwmans, T., Castellanos-Dominguez, G.: GMM background modeling using divergence-based weight updating. In: Conference Ibero-American Congress on Pattern Recognition (2016)

    Google Scholar 

  6. Zivkovic, Z.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006)

    Article  Google Scholar 

  7. Bouwmans, T., El Baf, F.: Modeling of dynamic backgrounds by type-2 fuzzy gaussians mixture models. J. Basic Appl. Sci. 1(2), 265–276 (2009)

    Google Scholar 

  8. Zhang, H., Xu D.: Fusing color and gradient features for background model. In: International Conference on Signal Processing, vol. 2, no. 7 (2006)

    Google Scholar 

  9. Baf, F.E., Bouwmans, T., Vachon, B.: Fuzzy integral for moving object detection. In: IEEE International Conference on Fuzzy Systems, pp. 1729–1736 (2008)

    Google Scholar 

  10. Oliver, N., Rosario, B., Pentland, A.: A Bayesian computer vision system for modeling human interactions. In: ICVS (1999)

    Google Scholar 

  11. Dong, Y., DeSouza, G.: Adaptive learning of multi-subspace for foreground detection under illumination changes. Comput. Vis. Image 115, 31–49 (2011)

    Article  Google Scholar 

  12. Bouwmans, T., Sobral, A., Javed, S., Jung, S.: Decomposition into low-rank plus additive matrices for background/foreground separation:a review for a comparative evaluation with a large-scale dataset. Comput. Sci. Rev. 23, 1–71 (2017)

    Article  Google Scholar 

  13. Guyon, C., Bouwmans, T., Zahzah, E.: Foreground detection by robust PCA solved via a linearized alternating direction method. In: International Conference on Image Analysis and Recognition, ICIAR (2012)

    Google Scholar 

  14. Vaswani, N., Bouwmans, T., Javed, S., Narayanamurth, P.: Robust subspace learning: robust PCA, robust subspace tracking and robust subspace recovery. IEEE Signal Process. Mag. 35(4), 32–55 (2018b)

    Article  Google Scholar 

  15. Xu, P., Ye, M., Liu, Q., Li, X., Ding, J.: Motion detection via a couple of auto-encoder networks. In: International Conference on Multimedia and Expo, ICME (2014)

    Google Scholar 

  16. Braham, M., Droogenbroeck, M.V.: Deep background subtraction with scene-specific convolutional neural networks. In: International Conference on Systems, Signals and Image Processing, IWSSIP, pp. 1–4 (2016)

    Google Scholar 

  17. Wang, Y., Luo, Z., Jodoin, P.: Interactive deep learning method for segmenting moving objects. Pattern Recogn. Lett. 96, 66–75 (2016)

    Article  Google Scholar 

  18. Babaee, M., Dinh, D., Rigoll, G.: A deep convolutional neural network for background subtraction. Pattern Recogn. (2017)

    Google Scholar 

  19. Lim, K., Jang, W., Kim, C.: Background subtraction using encoder-decoder structured convolutional neural network. In: IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS (2017)

    Google Scholar 

  20. Zhang, Y., Li, X., Zhang, Z., Wu, F., Zhao, L.: Deep learning driven blockwise moving object detection with binaryscene modeling. Neurocomputing 168, 454–463 (2015)

    Article  Google Scholar 

  21. Zhou, C., Paffenroth, R.: Anomaly detection with robust deep autoencoders. In: KDD (2017)

    Google Scholar 

  22. Chalapathy, R., Menon, A., Chawla, S.: Robust, deep and inductive anomaly detection. Preprint (2017)

    Google Scholar 

  23. Teng, X., Yan, M., Ertugrul, A., Lin, Y.: Deep into hypersphere: robust and unsupervised anomaly discovery in dynamic networks. In: International Joint Conference on Artificial Intelligence, IJCAI, pp. 2724–2730 (2018)

    Google Scholar 

  24. Cun, Y.L., Bottou, L., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  25. Bautista, C.M., Dy, C.A., Manalac, M.I., Orbe, R.A., Cordel, M.: Convolutional neural network for vehicle detection in low resolution traffic videos. TENSYMP 9(11), 277–281 (2016)

    Google Scholar 

  26. Yan, Y., Zhao, H., Kao, F., Vargas, V., Zhao, S., Ren, J.: Deep background subtraction of thermal and visible imagery for pedestrian detection in videos. In: International Conference on Brain Inspired Cognitive Systems, BICS (2018)

    Google Scholar 

  27. Lim, L., Keles, H.: Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding. Preprint (2018)

    Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representation (2015)

    Google Scholar 

  29. Lim, L., Keles, H.: Foreground segmentation using convolutional neural networks for multiscale feature encoding. Pattern Recogn. Lett. 112, 256–262 (2018)

    Article  Google Scholar 

  30. Lim, L., Ang, l., Keles, H.: Learning multi-scale features for foreground segmentation. Preprint (2018)

    Google Scholar 

  31. Liao, J., Guo, G., Yan, Y., Wang, H.: Multiscale cascaded scene-specific convolutional neural networks for background subtraction. In: Pacific Rim Conference on Multimedia, PCM, pp. 524–533 (2018)

    Google Scholar 

  32. Bakkay, M., Rashwan, H., Salmane, H., Khoudour, L., Puig, D., Ruichek, Y.: BSCGAN: deep background subtraction with conditional generative adversarial networks. In: International Conference on Image Processing, ICIP (2018)

    Google Scholar 

  33. Zheng, W., Wang, K., Wang, F.: Background subtraction algorithm based on Bayesian generative adversarial networks. Acta Automatica Sinica 44, 878–890 (2018)

    MATH  Google Scholar 

  34. Bahri, F., Shakeri, M., Ray, N.: Online illumination invariant moving object detection by generative neural network. Preprint (2018)

    Google Scholar 

  35. Choo, S., Seo, W., Jeong, D., Cho, N.: Multi-scale recurrent encoder-decoder network for dense temporal classification. In: ICPR, pp. 103–108 (2018)

    Google Scholar 

  36. Farnoosh, A., Rezaei, B., Ostadabbas, S.: DeepPBM: deep probabilistic background model estimation from video sequences. Preprint (2019)

    Google Scholar 

  37. Doersch, C.: Tutorial on variational autoencoders. Preprint (2016)

    Google Scholar 

  38. Dai, J., Wang, Y., Aston, J., Wipf, D.: Connections with robust PCA and the role of emergent sparsity in variational autoencoder models. J. Mach. Learn. Res. (JMLR) 19, 1–42 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Liu, X., Zhao, G., Yao, J., Qi, C.: Background subtraction based on low-rank and structured sparse decomposition. Trans. Image Process 24, 2502–2514 (2015)

    Article  MathSciNet  Google Scholar 

  40. Ammar, S., Zaghden, N., Neji, M.: A framework for people re-identification in multi-camera surveillance systems. In: International Conference on Cognition and Exploratory Learning in Digital Age CELDA (2017)

    Google Scholar 

  41. Vacavant, A., Chateau, T., Wilhelm, A., Lequièvre, L.: A benchmark dataset for outdoor foreground/background extraction. In: Park, J.-I., Kim, J. (eds.) ACCV 2012. LNCS, vol. 7728, pp. 291–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37410-4_25

    Chapter  Google Scholar 

  42. Baytas, M., Xiao, C., et al.: Patient subtyping via time-aware LSTM networks. In: SIGKDD, vol. 19, pp. 65–74 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirine Ammar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ammar, S., Bouwmans, T., Zaghden, N., Neji, M. (2019). Moving Objects Segmentation Based on DeepSphere in Video Surveillance. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11845. Springer, Cham. https://doi.org/10.1007/978-3-030-33723-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33723-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33722-3

  • Online ISBN: 978-3-030-33723-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics