Abstract
Explainable Machine Learning is an emerging field in the Machine Learning domain. It addresses the explicability of Machine Learning models and the inherent rationale behind model predictions. In the particular case of example-based explanation methods, they are focused on using particular instances, previously defined or created, to explain the behaviour of models or predictions. Counterfactual-based explanation is one of these methods. A counterfactual is an hypothetical instance similar to an example whose explanation is of interest but with different predicted class. This paper presents a relevance metric for counterfactual selection called sGower designed to induce sparsity in Decision Trees models. It works with categorical and continuous features, while considering number of feature changes and distance between the counterfactual and the example. The proposed metric is evaluated against previous relevance metrics on several sets of categorical and continuous data, obtaining on average better results than previous approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adhikari, A., Tax, D., Satta, R., Fath, M.: Example and feature importance-based explanations for black-box machine learning models. arXiv preprint arXiv:1812.09044 (2018)
Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
Gower, J.C.: A general coefficient of similarity and some of its properties. Biometrics 24, 857–871 (1971)
Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti, F.: Local rule-based explanations of black box decision systems. arXiv preprint arXiv:1805.10820 (2018)
Hall, P., Gill, N.: Introduction to Machine Learning Interpretability. O’Reilly Media, Sebastopol (2018)
Kim, B., Khanna, R., Koyejo, O.O.: Examples are not enough, learn to criticize! criticism for interpretability. In: Advances in Neural Information Processing Systems, pp. 2280–2288 (2016)
Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1885–1894. JMLR. org (2017)
Laugel, T., Lesot, M.J., Marsala, C., Renard, X., Detyniecki, M.: Inverse classification for comparison-based interpretability in machine learning. arXiv preprint arXiv:1712.08443 (2017)
Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2018)
Molnar, C.: Interpretable machine learning (2018)
Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)
Sokol, K., Flach, P.A.: Glass-box: explaining AI decisions with counterfactual statements through conversation with a voice-enabled virtual assistant. In: IJCAI, pp. 5868–5870 (2018)
Yeh, I.C., Yang, K.J., Ting, T.M.: Knowledge discovery on RFM model using Bernoulli sequence. Expert Syst. Appl. 36(3), 5866–5871 (2009)
Acknowledgements
Research supported by grant from the Spanish Ministry of Economy and Competitiveness: SABERMED (Ref: RTC-2017-6253-1); Retos-Investigación program: MODAS-IN (Ref: RTI2018-094269-B-I00); and NVIDIA Corporation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Fernández, R.R., de Diego, I.M., Aceña, V., Moguerza, J.M., Fernández-Isabel, A. (2019). Relevance Metric for Counterfactuals Selection in Decision Trees. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2019. IDEAL 2019. Lecture Notes in Computer Science(), vol 11871. Springer, Cham. https://doi.org/10.1007/978-3-030-33607-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-33607-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33606-6
Online ISBN: 978-3-030-33607-3
eBook Packages: Computer ScienceComputer Science (R0)