[go: up one dir, main page]

Skip to main content

Direct-To-Satellite IoT - A Survey of the State of the Art and Future Research Perspectives

Backhauling the IoT Through LEO Satellites

  • Conference paper
  • First Online:
Ad-Hoc, Mobile, and Wireless Networks (ADHOC-NOW 2019)

Abstract

The Internet of Things (IoT) has drawn an enormous attention into the scientific community thanks to unimaginable before applications newly available in everyday life. The technological landscape behind the implied surge of automated interactions among humans and machines has been shaped by plugging into the Internet very low power devices that can perform monitoring and actuation operations through very cheap circuitry. The most challenging IoT scenarios include deployments of low power devices dispersed over wide geographical areas. In such scenarios, satellites will play a key role in bridging the gap towards a pervasive IoT able to easily handle disaster recovery scenarios (earthquakes, tsunamis, and flash floods, etc.), where the presence of a resilient backhauling communications infrastructure is crucial. In these scenarios, Direct-to-Satellite IoT (DtS-IoT) connectivity is preferred as no intermediate ground gateway is required, facilitating and speeding up the deployment of wide coverage IoT infrastructure. In this work, an in-depth yet thorough survey on the state-of-the-art of DtS-IoT is presented. The available physical layer techniques specifically designed for the IoT satellite link are described, and the suitability of both the current Medium Access Control protocol and the upper layer protocols to communicate over space links will be argued. We also discuss the design of the overall satellite LEO constellation and topology to be considered in DtS-IoT networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelfadeel, K.Q., Cionca, V., Pesch, D.: Dynamic context for static context header compression in LPWANs. In: Proceedings - 14th Annual International Conference on Distributed Computing in Sensor Systems, DCOSS 2018 (2018). https://doi.org/10.1109/DCOSS.2018.00013

  2. Abramson, N.: The ALOHA system: another alternative for computer communications. In: Fall Joint Computer Conference, vol. 37, pp. 281–285, January 1977. https://doi.org/10.1145/1478462.1478502

  3. Accettura, N., Alata, E., Berthou, P., Dragomirescu, D., Monteil, T.: Addressing scalable, optimal, and secure communications over LoRa networks: challenges and research directions. Internet Technol. Lett. 1(4), e54 (2018). https://doi.org/10.1002/itl2.54

  4. Afolabi, R.O., Dadlani, A., Kim, K.: Multicast scheduling and resource allocation algorithms for OFDMA-based systems: a survey. IEEE Commun. Surv. Tutorials 15(1), 240–254 (2013). https://doi.org/10.1109/SURV.2012.013012.00074

    Article  Google Scholar 

  5. Agarwal, A., Gupta, S., Kumar, S., Singh, D.: An efficient use of IoT for satellite data in land cover monitoring to estimate LST and ET. In: 2016 11th International Conference on Industrial and Information Systems (ICIIS), pp. 905–909, December 2016. https://doi.org/10.1109/ICIINFS.2016.8263067

  6. Allman, M., Glover, D., Sanchez, L.: Enhancing TCP over satellite channels using standard mechanisms. BCP 28, RFC Editor, January 1999

    Google Scholar 

  7. Anteur, M., Deslandes, V., Thomas, N., Beylot, A.: Ultra narrow band technique for low power wide area communications. In: 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, December 2015. https://doi.org/10.1109/GLOCOM.2015.7417420

  8. Bacco, M., et al.: IoT applications and services in space information networks. IEEE Wirel. Commun. 26(2), 31–37 (2019). https://doi.org/10.1109/MWC.2019.1800297

    Article  Google Scholar 

  9. Bacco, M., Colucci, M., Gotta, A.: Application protocols enabling Internet of remote things via random access satellite channels. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6, May 2017. https://doi.org/10.1109/ICC.2017.7997292

  10. Berni, A., Gregg, W.: On the utility of chirp modulation for digital signaling. IEEE Trans. Commun. 21(6), 748–751 (1973). https://doi.org/10.1109/TCOM.1973.1091721

    Article  Google Scholar 

  11. Bisio, I., Marchese, M.: Efficient satellite-based sensor networks for information retrieval. IEEE Syst. J. 2, 464–475 (2008). https://doi.org/10.1109/JSYST.2008.2004850

    Article  Google Scholar 

  12. Casini, E., De Gaudenzi, R., Del Rio Herrero, O.: Contention resolution diversity slotted ALOHA (CRDSA): An enhanced random access schemefor satellite access packet networks. IEEE Trans. Wireless Commun. 6(4), 1408–1419 (2007). https://doi.org/10.1109/TWC.2007.348337

    Article  Google Scholar 

  13. Casini, E., De Gaudenzi, R., Del Rio Herrero, O.: Contention resolution diversity slotted ALOHA (CRDSA): an enhanced random access scheme for satellite access packet networks. IEEE Trans. Wirel. Commun. 6(4), 1408–1419 (2007). https://doi.org/10.1109/TWC.2007.348337

    Article  Google Scholar 

  14. Choudhury, G., Rappaport, S.: Diversity ALOHA - a random access scheme for satellite communications. IEEE Trans. Commun. 31(3), 450–457 (1983). https://doi.org/10.1109/TCOM.1983.1095828

    Article  Google Scholar 

  15. Cocco, G., Ibars, C.: On the feasibility of satellite M2M systems. In: 30th AIAA International Communications Satellite System Conference (ICSSC), September 2012. https://doi.org/10.2514/6.2012-15074

  16. Rohde, D., Schwarz, J.: Narrowband Internet of Things, August 2016. www.rohde-schwarz.com/us/applications/narrowband-internet-of-things-application-note 56280--314242.html

  17. De Sanctis, M., Cianca, E., Araniti, G., Bisio, I., Prasad, R.: Satellite communications supporting Internet of remote things. IEEE Internet Things J. 3(1), 113–123 (2016). https://doi.org/10.1109/JIOT.2015.2487046

    Article  Google Scholar 

  18. Del Rio Herrero, O., De Gaudenzi, R.: High efficiency satellite multiple access scheme for machine-to-machine communications. IEEE Trans. Aerosp. Electron. Syst. 48(4), 2961–2989 (2012). https://doi.org/10.1109/TAES.2012.6324672

    Article  Google Scholar 

  19. Demetri, S., Zúñiga, M., Picco, G.P., Kuipers, F., Bruzzone, L., Telkamp, T.: Automated estimation of link quality for LoRa : a remote sensing approach. In: Proceedings of the 18th International Conference on Information Processing in Sensor Networks, pp. 145–156. ACM, Montreal (2019). https://dl.acm.org/citation.cfm?doid=3302506.3310396

  20. Deng, T., Zhu, J., Nie, Z.: An adaptive MAC protocol for SDCS system based on LoRa technology. In: 2017 2nd International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2017). Atlantis Press, March 2017. https://doi.org/10.2991/amcce-17.2017.146

  21. Doroshkin, A., Zadorozhny, A., Kus, O., Prokopyev, V.: Experimental study of LoRa modulation immunity to doppler effect in CubeSat radio communications. IEEE Access PP(c), 1 (2019). https://doi.org/10.1109/ACCESS.2019.2919274

  22. Fairhurst, G., Caviglione, L., Collini-Nocker, B.: First: future Internet - a role for satellite technology. In: 2008 IEEE International Workshop on Satellite and Space Communications, pp. 160–164, October 2008. https://doi.org/10.1109/IWSSC.2008.4656774

  23. Ferrer, T., Céspedes, S., Becerra, A.: Review and evaluation of MAC protocols for satellite IoT systems using nanosatellites. Sensors 19(8) (1947) (2019). https://doi.org/10.3390/s19081947

  24. Franck, L., Suffritti, R.: Multiple alert message encapsulation over satellite. In: 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace Electronic Systems Technology, pp. 540–543, May 2009. https://doi.org/10.1109/WIRELESSVITAE.2009.5172503

  25. Ghavimi, F., Chen, H.: M2M communications in 3GPP LTE/LTE-a networks: architectures, service requirements, challenges, and applications. IEEE Commun. Surv. Tutorials 17(2), 525–549 (2015). https://doi.org/10.1109/COMST.2014.2361626

    Article  Google Scholar 

  26. Giotti, D., Lamorte, L., Soua, R., Palattella, M.R., Engel, T.: Performance analysis of CoAP under satellite link disruption. In: 2018 25th International Conference on Telecommunications (ICT), pp. 623–628. IEEE, St. Malo (2018). https://doi.org/10.1109/ICT.2018.8464881

  27. Hu, D., He, L., Wu, J.: A novel forward-link multiplexed scheme in satellite-based Internet of Things. IEEE Internet of Things J. 5(2), 1265–1274 (2018). https://doi.org/10.1109/JIOT.2018.2799550

    Article  Google Scholar 

  28. Joroughi, V., Vázquez, M.Á., Pérez-Neira, A.I.: Generalized multicast multibeam precoding for satellite communications. IEEE Trans. Wirel. Commun. 16(2), 952–966 (2017). https://doi.org/10.1109/TWC.2016.2635139

    Article  Google Scholar 

  29. Kawamoto, Y., Nishiyama, H., Fadlullah, Z.M., Kato, N.: Effective data collection via satellite-routed sensor system (SRSS) to realize global-scaled Internet of Things. IEEE Sens. J. 13(10), 3645–3654 (2013). https://doi.org/10.1109/JSEN.2013.2262676

    Article  Google Scholar 

  30. Knight, M., Seeber, B.: Decoding LoRa: realizing a modern LPWAN with SDR. In: Proceedings of the GNU Radio Conference, vol. 1, no. 1 (2016). https://pubs.gnuradio.org/index.php/grcon/article/view/8

  31. Lassen, T.: Long-range RF communication: why narrowband is the de facto standard. Texas Instruments White Paper (2014)

    Google Scholar 

  32. Link Labs Inc.: A Comprehensive Look at Low Power, Wide Area Networks. http://cdn2.hubspot.net/hubfs/427771/LPWAN-Brochure-Interactive.pdf

  33. LoRa Alliance: LoRaWAN What is it. Technical Marketing Workgroup 1.0, November 2015. https://www.lora-alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf

  34. LoRa Alliance Technical Committee: LoRaWAN 1.1 Specification, v1.1, October 2017

    Google Scholar 

  35. Ma, H., Cai, L.: Performance analysis of randomized MAC for satellite telemetry systems. In: 2010 5th International ICST Conference on Communications and Networking in China, pp. 1–5, August 2010

    Google Scholar 

  36. Meloni, A., Atzori, L.: The role of satellite communications in the smart grid. Wirel. Commun. 24(2), 50–56 (2017). https://doi.org/10.1109/MWC.2017.1600251

  37. Minaburo, A., Toutain, L., Gomez, C., Barthel, D., Zuniga, J.: Lpwan static context header compression (SCHC) and fragmentation for IPv6 and UDP. Internet-Draft draft-ietf-lpwan-ipv6-static-context-hc-18, IETF Secretariat, December 2018. http://www.ietf.org/internet-drafts/draft-ietf-lpwan-ipv6-static-context-hc-18.txt

  38. Minoli, D.: Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications, 1st edn. Wiley Publishing, Hoboken (2013)

    Book  Google Scholar 

  39. Nguyen, T., Patonico, S., Bezunartea, M., Thielemans, S., Braeken, A., Steenhaut, K.: Horizontal integration of CoAP and MQTT on Internet protocol - based LoRaMotes. In: 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–7, September 2018. https://doi.org/10.1109/PIMRC.2018.8580674

  40. Palattella, M.R., et al.: Standardized protocol stack for the Internet of (important) Things. IEEE Commun. Surv. Tutorials 15(3), 1389–1406 (2013). https://doi.org/10.1109/SURV.2012.111412.00158

  41. Palattella, M.R., Accettura, N.: Enabling Internet of everything everywhere: LPWAN with satellite backhaul. In: 2018 Global Information Infrastructure and Networking Symposium (GIIS), pp. 1–5. IEEE, October 2018. https://doi.org/10.1109/GIIS.2018.8635663, https://ieeexplore.ieee.org/document/8635663/

  42. Papaleo, M., Neri, M., Vanelli-Coralli, A., Corazza, G.E.: Using LTE in 4G satellite communications: increasing time diversity through forced retransmission. In: 2008 10th International Workshop on Signal Processing for Space Communications, pp. 1–4, October 2008. https://doi.org/10.1109/SPSC.2008.4686699

  43. Pateros, C.: Novel direct sequence spread spectrum multiple access technique. In: MILCOM 2000 Proceedings. 21st Century Military Communications. Architectures and Technologies for Information Superiority (Cat. No.00CH37155), vol. 1, pp. 564–568, October 2000. https://doi.org/10.1109/MILCOM.2000.905024

  44. Pursley, M.B.: Direct-sequence spread-spectrum communications for multipath channels. IEEE Trans. Microw. Theory Tech. 50(3), 653–661 (2002). https://doi.org/10.1109/22.989950

    Article  Google Scholar 

  45. Qian, Y., Ma, L., Liang, X.: Symmetry chirp spread spectrum modulation used in LEO satellite Internet of Things. IEEE Commun. Lett. 22(11), 2230–2233 (2018). https://doi.org/10.1109/LCOMM.2018.2866820, https://ieeexplore.ieee.org/document/8444661/

  46. Qu, Z., Zhang, G., Cao, H., Xie, J.: Leo satellite constellation for Internet of Things. IEEE Access 5, 18391–18401 (2017). https://doi.org/10.1109/ACCESS.2017.2735988

    Article  Google Scholar 

  47. Qu, Z., Zhang, G., Cao, H., Xie, J.: LEO satellite constellation for Internet of Things. IEEE Access 5, 18391–18401 (2017). https://doi.org/10.1109/ACCESS.2017.2735988, http://ieeexplore.ieee.org/document/8002583/

  48. Rebbeck, T., Mackenzie, M., Afonso, N.: Low-powered wireless solutions have the potential to increase the M2M market by over 3 billion connections. Analysys Mason, London, September 2014

    Google Scholar 

  49. Roberts, L.: ALOHA packet system with and without slots and capture. ACM SIGCOMM Comput. Commun. Rev. 5, 28–42 (1975). https://doi.org/10.1145/1024916.1024920

  50. Sigfox. https://www.sigfox.com

  51. Sinha, R.S., Wei, Y., Hwang, S.H.: A survey on LPWA technology: LoRa and NB-IoT. ICT Express 3(1), 14 – 21 (2017). https://doi.org/10.1016/j.icte.2017.03.004, http://www.sciencedirect.com/science/article/pii/S2405959517300061

  52. Thubert, P.: IPv6 neighbor discovery on wireless networks. Internet-Draft draft-thubert-6man-ipv6-over-wireless-01, IETF Secretariat, April 2019. http://www.ietf.org/internet-drafts/draft-thubert-6man-ipv6-over-wireless-01.txt

  53. Wood, L.: SaVi: satellite constellation visualization, June 2011. https://savi.sourceforge.io/

  54. Yu, Q., Meng, W., Yang, M., Zheng, L., Zhang, Z.: Virtual multi-beamforming for distributed satellite clusters in space information networks. IEEE Wirel. Commun. 23(1), 95–101 (2016). https://doi.org/10.1109/MWC.2016.7422411

    Article  Google Scholar 

  55. Zhang, N., Wang, M., Wang, N.: Precision agriculture-a worldwide overview. Comput. Electron. Agric. 36(2), 113 – 132 (2002). https://doi.org/10.1016/S0168-16990200096-0, http://www.sciencedirect.com/science/article/pii/S0168169902000960

  56. Zheng, G., Chatzinotas, S., Ottersten, B.: Generic optimization of linear precoding in multibeam satellite systems. IEEE Trans. Wirel. Commun. 11(6), 2308–2320 (2012). https://doi.org/10.1109/TWC.2012.040412.111629

    Article  Google Scholar 

  57. Zhou, H.: The Internet of Things in the Cloud: A Middleware Perspective, 1st edn. CRC Press Inc., Boca Raton (2012)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Accettura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fraire, J.A., Céspedes, S., Accettura, N. (2019). Direct-To-Satellite IoT - A Survey of the State of the Art and Future Research Perspectives. In: Palattella, M., Scanzio, S., Coleri Ergen, S. (eds) Ad-Hoc, Mobile, and Wireless Networks. ADHOC-NOW 2019. Lecture Notes in Computer Science(), vol 11803. Springer, Cham. https://doi.org/10.1007/978-3-030-31831-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31831-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31830-7

  • Online ISBN: 978-3-030-31831-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics