Abstract
Automatically assessing the aesthetic quality of images that is consistent with humans is a challenging task. Previous works based on Convolution Neural Network (CNN) lacks of perception consistency in two aspects. First, they mainly extract features from the entire image without distinguishing between the foreground and background. Second, they classify images with highly-compressed semantic feature. In this paper, we proposed a visual perception network (VP-Net) to support perception consistency learning. It was designed as a double-subnet network which can learn from subject region feature and multi-level features. In addition, a subject region search algorithm was proposed to find out a composed of multiple subject regions. Experimental results on a large scale aesthetic dataset (AVA) have demonstrated the superiority of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, Y., Hu, Y., Zhang, L., Li, P., Zhang, C.: Engineering deep representations for modeling aesthetic perception. IEEE Trans. Cybern. 48(11), 3092–3104 (2018)
Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying aesthetics in photographic images using a computational approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006). https://doi.org/10.1007/11744078_23
Datta, R., Li, J., Wang, J.Z.: Algorithmic inferencing of aesthetics and emotion in natural images: an exposition. In: 2008 15th IEEE International Conference on Image Processing, ICIP 2008, pp. 105–108. IEEE (2008)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Kairanbay, M., See, J., Wong, L.K., Hii, Y.L.: Filling the gaps: reducing the complexity of networks for multi-attribute image aesthetic prediction. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3051–3055. IEEE (2017)
Kao, Y., He, R., Huang, K.: Deep aesthetic quality assessment with semantic information. IEEE Trans. Image Process. 26(3), 1482–1495 (2017)
Kong, S., Shen, X., Lin, Z., Mech, R., Fowlkes, C.: Photo aesthetics ranking network with attributes and content adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 662–679. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_40
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
Lin, T.Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2017)
Liu, L., Chen, R., Wolf, L., Cohen-Or, D.: Optimizing photo composition. In: Computer Graphics Forum, vol. 29, pp. 469–478. Wiley (2010)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Lu, X., Lin, Z., Jin, H., Yang, J., Wang, J.Z.: RAPID: rating pictorial aesthetics using deep learning. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 457–466. ACM (2014)
Lu, X., Lin, Z., Shen, X., Mech, R., Wang, J.Z.: Deep multi-patch aggregation network for image style, aesthetics, and quality estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 990–998 (2015)
Luo, W., Wang, X., Tang, X.: Content-based photo quality assessment. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2206–2213. IEEE (2011)
Luo, Y., Tang, X.: Photo and video quality evaluation: focusing on the subject. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 386–399. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_29
Mai, L., Jin, H., Liu, F.: Composition-preserving deep photo aesthetics assessment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 497–506 (2016)
Meng, X., Gao, F., Shi, S., Zhu, S., Zhu, J.: MLANs: image aesthetic assessment via multi-layer aggregation networks. In: 2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6. IEEE (2018)
Murray, N., Marchesotti, L., Perronnin, F.: AVA: a large-scale database for aesthetic visual analysis. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2408–2415. IEEE (2012)
Pan, J., Sayrol, E., Giro-i Nieto, X., McGuinness, K., O’Connor, N.E.: Shallow and deep convolutional networks for saliency prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 598–606 (2016)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Wang, Z., Liu, D., Chang, S., Dolcos, F., Beck, D., Huang, T.: Image aesthetics assessment using Deep Chatterjee’s machine. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 941–948. IEEE (2017)
Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)
Yeh, M.C., Cheng, Y.C.: Relative features for photo quality assessment. In: 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 2861–2864. IEEE (2012)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
Zhang, C., Zhu, C., Xu, X., Liu, Y., Xiao, J., Tillo, T.: Visual aesthetic understanding: sample-specific aesthetic classification and deep activation map visualization. Sig. Process. Image Commun. 67, 12–21 (2018)
Zhang, J., Du, J., Dai, L.: Multi-scale attention with dense encoder for handwritten mathematical expression recognition. arXiv preprint arXiv:1801.03530 (2018)
Zhou, X., et al.: EAST: an efficient and accurate scene text detector. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2642–2651 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, W., Deng, R., Li, L., Xu, X. (2019). Image Aesthetic Assessment Based on Perception Consistency. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11858. Springer, Cham. https://doi.org/10.1007/978-3-030-31723-2_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-31723-2_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31722-5
Online ISBN: 978-3-030-31723-2
eBook Packages: Computer ScienceComputer Science (R0)