[go: up one dir, main page]

Skip to main content

Computational Thinking in Basic Education in a Developing Country Perspective

  • Conference paper
  • First Online:
Research & Innovation Forum 2019 (RIIFORUM 2019)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

  • 1242 Accesses

Abstract

In a connected world, where information is the most valuable input, compulsory education in computational thinking, especially in early ages, had became an important topic for governments who aim in a economy based on technology. This brought initiatives for compulsive adoption on basic education in USA and EU, but few actions on developing countries. This article presents a systematic review of academic papers and commercial products that present the teaching of logic to young people, and that deal with the use of tangible devices, robots or specific software. From the analysis performed with the review, we define requirements for teaching. Thus, considering the factors of analysis, such as pricing and replicability, we generate a series of sub-requirements aimed at adopting a solution for public schools from developing countries. As preliminary results, an interactive robot and a set of tangible artifacts adhering to the identified requirements are presented as a proposal for the teaching of computational thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Papert, S.: The Childrens Machine: Rethinking School in the Age of the Computer. Basic Books Inc., New York (1993)

    Google Scholar 

  2. Hatch, M.: The maker movement manifesto. Mak. Mov. Manif. (2014). https://doi.org/10.1162/INOV_a_00135

    Article  Google Scholar 

  3. White House: The Maker Movement. https://www.whitehouse.gov/nation-of-makers

  4. Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P., Punie, Y.: Developing computational thinking in compulsory education. Proc. EdMedia 2016 (2016). https://doi.org/10.2791/792158

  5. Takahashi, F.: Matemtica e Cincia da Computao tem alta taxa de abandono. http://www1.folha.uol.com.br/educacao/2009/04/546576-matematica-e-ciencias-da-computacao-tem-alta-taxa-de-abandono.shtml

  6. Bosse, Y., Gerosa, M.A.: Why is programming so difficult to learn?: Patterns of difficulties related to programming learning mid-stage. SIGSOFT Softw. Eng. Notes. 41, 16 (2017). https://doi.org/10.1145/3011286.3011301

    Article  Google Scholar 

  7. Rogers, Y., Sharp, H., Preece, J.: O que Design de Interao? In: Design de Interao. p. 2529. Bookman, Porto Alegre, Brazil (2013)

    Google Scholar 

  8. Rabello, E., Silveira, J.: Vygotsky e o desenvolvimento humano. 110 (2011)

    Google Scholar 

  9. Vygotsky, L.S.: Mind in society (1978)

    Google Scholar 

  10. Rogers, Y., Sharp, H., Preece, J.: Compreendendo e Conceitualizando a Interao. In: Design de Interao. p. 4647. Bookman, Porto Alegre, Brazil (2013)

    Google Scholar 

  11. Katterfeldt, E.-S., Cuartielles, D., Spikol, D., Ehrenberg, N.: Talkoo. A new paradigm for physical computing at school. Proceedings of the 15th International Conference on Interaction Design and Children-IDC pp. 512–517 (2016). https://doi.org/10.1145/2930674.2935990

  12. van Gennip, D., Orth, D., Imtiaz, M.A., van den Hoven, E., Plimmer, B.: Tangible cognition: bringing together tangible interaction and cognition in HCI. In: Proceedings of the 28th Australian Conference on Computer-Human Interaction. pp. 662–665. ACM, New York (2016)

    Google Scholar 

  13. Horn, M.S., Solovey, E.T., Crouser, R.J., Jacob, R.J.K.: Comparing the use of tangible and graphical programming languages for informal science education. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems-CHI. p. 975 (2009). https://doi.org/10.1145/1518701.1518851

  14. McNerney, T.S.: From turtles to tangible programming bricks: explorations in physical language design. Pers. Ubiquitous Comput. 8, 326337 (2004). https://doi.org/10.1007/s00779-004-0295-6

    Article  Google Scholar 

  15. Futschek, G., Moschitz, J.: Learning algorithmic thinking with tangible objects eases transition to computer programming. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 7013 LNCS, 155164 (2011). https://doi.org/10.1007/978-3-642-24722-4_14

    Google Scholar 

  16. Posada, J.E.G., Baranauskas, M.C.C.: A socio-constructionist environment to create stories using tangible interfaces. In: Proceedings of the 14th Brazilian Symposium on Human Factors in Computing Systems. pp. 1:1–1:10. ACM, New York (2015)

    Google Scholar 

  17. Honig, W.L.: Teaching and assessing programming fundamentals for non majors with visual programming. In: Proceedings of the 18th ACM conference on Innovation and Technology in Computer Science Education-ITiCSE 13. p. 40. ACM, New York (2013)

    Google Scholar 

  18. Martins, F.N., Gomes, I.S., Santos, C.R.F.: Junior soccer simulation: providing all primary and secondary students access to educational robotics. In: Proceedings of the 12th LARS Latin American Robotics Symposium 3rd SBR Brazilian Symposium on Robotics LARS-SBR 2015—Part Robotics Conference 2015. pp. 61–66 (2016). https://doi.org/10.1109/LARS-SBR.2015.16

  19. Esper, S., Foster, S.R., Griswold, W.G.: CodeSpells. In: Proceedings of the 18th ACM Conference on Innovation and Technology in Computer Science Education-ITiCSE 13. p. 249 (2013). https://doi.org/10.1145/2462476.2465593

  20. Azemi, A., Pauley, L.L.: Teaching the introductory computer programming course for engineers using Matlab. In: 2008 38th Annual Frontiers in Education Conference (2008). https://doi.org/10.1109/FIE.2008.4720302

  21. Sarkar, N.I., Craig, T.M.: A low-cost PIC unit for teaching computer hardware fundamentals to undergraduates. ACM SIGCSE Bull. 39, 88 (2007). https://doi.org/10.1145/1272848.1272892

    Article  Google Scholar 

  22. Anki: Cozmo. https://www.anki.com/en-us/cozmo (2015)

  23. Fischer-Price: Think and learn. http://www.fisher-price.com/pt_BR/brands/think-and-learn/index.html (2017)

  24. Hongjun, S., Xin, M., Fengyu, Z., Yibin, L.: The design and implementation of OpenGL-based comprehensive educational robot system. In: Proceedings of the IEEE ICIA 2006—2006 IEEE International Conference on Information Acquisition. pp. 522–527 (2006). https://doi.org/10.1109/ICIA.2006.305788

  25. Garduno-Aparicio, M., Rodriguez-Resendiz, J., Macias-Bobadilla, G., Thenozhi, S.: A multidisciplinary industrial robot approach for teaching mechatronics-related courses. IEEE Trans. Educ. 61, 5562 (2018). https://doi.org/10.1109/TE.2017.2741446

    Article  Google Scholar 

  26. Lopes Filho, J.A.B., Almeida, W.R.M., Martins, S.G.: Development of a multitasking mobile robot for the construction of educational robotics kits. In: International Conference on Electronic Devices, Systems and Applications (ICEDSA). pp. 213–216 (2011). https://doi.org/10.1109/ICEDSA.2011.5959090

  27. Barreto, V.B., LErario, A., Fabri, J.A.: Ensino de Programacao para Alunos do Ensino Mdio Utilizando o Robo Lego Mindstorms. In: 2015 10th Iberian Conference on Information Systems Technologies CISTI (2015). https://doi.org/10.1109/CISTI.2015.7170521

  28. Lalonde, J.-F., Bartley, C.P., Nourbakhsh, I.: Mobile robot programming in education. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation pp. 345–350 (2006). https://doi.org/10.1109/ROBOT.2006.1641735

  29. Member, M.R., Lysecky, S., Rozenblit, J.: Educational technologies for precollege engineers. 5, 2037 (2011)

    Google Scholar 

  30. Merkouris, A., Chorianopoulos, K., Kameas, A.: Teaching programming in secondary education through embodied computing platforms. ACM Trans. Comput. Educ. 17, 122 (2017). https://doi.org/10.1145/3025013

    Article  Google Scholar 

  31. Ozobot, Evollve.: Ozobot, www.ozobot.com (2017)

  32. Besari, A.R.A., Sukaridhoto, S., Wibowo, I.K., Berlian, M.H., Akbar, M.A.W., Yohanes Yohanie, F.P., Aldi Bayu, K.I.: Preliminary design of interactive visual mobile programming on educational robot ADROIT V1. In: Proceedings of the 2016 International Electronics Symposium. IES 2016. pp. 499–503 (2017). https://doi.org/10.1109/ELECSYM.2016.7861057

  33. Krishnamoorthy, S.P., Kapila, V.: Using a visual programming environment and custom robots to learn C programming and K-12 STEM concepts. In: Proceedings of the 6th Annual Conference on Creativity and Fabrication in Education-FabLearn 16. pp. 41–48 (2016)

    Google Scholar 

  34. Gupta, N., Tejovanth, N., Murthy, P.: Learning by creating: interactive programming for Indian high schools. In: Proceedings of the 2012 IEEE International Conference on Technology Enhanced Education ICTEE 2012. p. 24 (2012). https://doi.org/10.1109/ICTEE.2012.6208643

  35. Tangible Play Inc.: Osmo (2013)

    Google Scholar 

  36. Banzi, M.: Getting Started with Arduino (Make: Projects). Make Books (2008)

    Google Scholar 

  37. Carbajal, M.L., Baranauskas, M.C.C.: TaPrEC: Desenvolvendo um ambiente de programao tangvel de baixo custo para crianas. An. do XX Congr. Int. Informtica Educ.- TISE. 11, 363–370 (2015)

    Google Scholar 

  38. Koushik, V., Kane, S.K.: Tangibles + Programming + Audio Stories = Fun. In: Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility-ASSETS 17. pp. 341–342 (2017). https://doi.org/10.1145/3132525.3134769

  39. Baranauskas, M.C.C., de Souza, C.S., Pereira, R.: GranDIHC-BR: Prospeco De Grandes Desafios De Pesquisa Em Interao Humano-computador No Brasil. In: Companion Proceedings of the 11th Brazilian Symposium on Human Factors in Computing Systems. p. 6364. Brazilian Computer Society, Porto Alegre, Brazil (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Chagas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chagas, D., Furtado, E. (2019). Computational Thinking in Basic Education in a Developing Country Perspective. In: Visvizi, A., Lytras, M. (eds) Research & Innovation Forum 2019. RIIFORUM 2019. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-30809-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30809-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30808-7

  • Online ISBN: 978-3-030-30809-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics