[go: up one dir, main page]

Skip to main content

Data Integration of Legacy ERP System Based on Ontology Learning from SQL Scripts

  • Conference paper
  • First Online:
New Trends in Databases and Information Systems (ADBIS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1064))

Included in the following conference series:

Abstract

To tackle the problem of low-efficiency integration of heterogeneous data from various legacy ERP systems, a data integration approach based on ontology learning are presented. Considering the unavailability of database interface and diversity of DBMS and naming conventions of legacy information systems, a data integration framework for legacy ERP systems based on ontology learning from structured query language (SQL) scripts (RDB) are proposed. The key steps and technicality of the proposed framework and the process of ontology-based semantic integration are depicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lenart, A.: ERP in the cloud – benefits and challenges. In: Wrycza, S. (ed.) SIGSAND/PLAIS 2011. LNBIP, vol. 93, pp. 39–50. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25676-9_4

    Chapter  Google Scholar 

  2. Nofal, M.I., Zawiyah, M.Y.: Integration of business intelligence and enterprise resource planning within organizations. Procedia Technol. 11, 658–665 (2013). https://doi.org/10.1016/j.protcy.2013.12.242

    Article  Google Scholar 

  3. Serrano, N., Hernantes, J., Gallardo, G.: Service-oriented architecture and legacy systems. IEEE Softw. 31(5), 15–19 (2014). https://doi.org/10.1109/MS.2014.125

    Article  Google Scholar 

  4. Ahmad, M.M., Ruben, P.C.: Critical success factors for ERP implementation in SMEs. Robot. Comput. Integr. Manuf. 29(3), 104–111 (2013). https://doi.org/10.1016/j.ijinfomgt.2009.03.001

    Article  Google Scholar 

  5. Malhotra, R., Cecilia, T.: Critical Decisions for ERP Integration: small business issues. Int. J. Inf. Manage. 30(1), 28–37 (2010)

    Article  Google Scholar 

  6. Singh, R., Singh, K.: A descriptive classification of causes of data quality problems in data warehousing. Int. J. Comput. Sci. Issues 7(3), 41–50 (2010)

    Google Scholar 

  7. Pérez-Castillo, R., De Guzman, I.G.R., Piattini, M.: Knowledge discovery metamodel-ISO/IEC 19506: a standard to modernize legacy systems. Comput. Stand. Interfaces 33(6), 519–532 (2011). https://doi.org/10.1016/j.csi.2011.02.007

    Article  Google Scholar 

  8. Millham, R., Yang, H.: Industrial report: data reengineering of COBOL sequential legacy systems. In: Proceedings of 33rd Annual IEEE International Computer Software and Applications Conference, vol. 1, pp. 646–647. IEEE, Seattle (2009)

    Google Scholar 

  9. Calvanese, D., Kalayci, T.E., Montali, M., Tinella, S.: Ontology-based data access for extracting event logs from legacy data: the onprom tool and methodology. In: Abramowicz, W. (ed.) BIS 2017. LNBIP, vol. 288, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59336-4_16

    Chapter  Google Scholar 

  10. Yano, K., Matsuo, A.: Data access visualization for legacy application maintenance. In: Proceedings of 24th IEEE International Conference on Software Analysis, pp. 546–550. IEEE, Klagenfurt (2017). https://doi.org/10.1109/SANER.2017.7884671

  11. Ilya, S., Dmitry, M.: Semi-automated integration of legacy systems using linked data. In: Proceedings of 4th International Conference on Analysis of Images, Social Networks and Texts, pp. 166–171. Ural Federal University, Yekaterinburg (2015)

    Google Scholar 

  12. Kalsing, A.C., do Nascimento, G.S., Iochpe, C., et al.: An incremental process mining approach to extract knowledge from legacy systems. In: Proceedings of 14th IEEE International Enterprise Distributed Object Computing Conference, pp. 79–88. IEEE, Vitoria (2010). https://doi.org/10.1109/EDOC.2010.13

  13. Pérez-Castillo, R., Weber, B., de Guzman, et al.: Process mining through dynamic analysis for modernising legacy systems. IET Softw. 5(3), 304–319 (2011). https://doi.org/10.1049/iet-sen.2010.0103

    Article  Google Scholar 

  14. Sartipi, K., Safyallah, H.: Dynamic knowledge extraction from software systems using sequential pattern mining. Int. J. Softw. Eng. Knowl. Eng. 20(6), 761–782 (2010). https://doi.org/10.1142/S021819401000492X

    Article  Google Scholar 

  15. Santoso, H.A., Haw, S.C., Abdul-Mehdi, Z.T.: Ontology extraction from relational database: concept hierarchy as background knowledge. Knowl. Based Syst. 24(3), 457–464 (2011). https://doi.org/10.1016/j.knosys.2010.11.003

    Article  Google Scholar 

  16. Gardner, S.P.: Ontologies and semantic data integration. Drug Discov. Today 10(14), 1001–1007 (2005)

    Article  Google Scholar 

  17. Calhau, R.F., De Almeida Falbo, R.: An ontology-based approach for semantic integration. In: Proceedings of 14th IEEE International Enterprise Distributed Object Computing Workshop, pp. 111–120. IEEE, Vitoria (2010). https://doi.org/10.1109/EDOC.2010.32

  18. Yaguinuma, C.A., Afonso, G.F., Ferraz, V., Borges, S., et al.: A fuzzy ontology-based semantic data integration system. J. Inf. Knowl. Manag. 10(3), 285–299 (2011). https://doi.org/10.1109/IRI.2010.5558938

    Article  Google Scholar 

  19. Correndo, G., Salvadores, M., Millard, I., Glaser, H.: SPARQL query rewriting for implementing data integration over linked data. In: Proceedings of 2010 EDBT/Workshops, pp. 1–11. ACM, Lausanne. https://doi.org/10.1145/1754239.1754244

  20. Li, Y.F., Kennedy, G., Ngoran, F., et al.: An ontology-centric architecture for extensible scientific data management systems. Future Gener. Comput. Syst. 29(2), 641–653 (2013). https://doi.org/10.1016/j.future.2011.06.007

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by grants of the European Union co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002) and the China Scholarship Council (201808610145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuangtao Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, C. (2019). Data Integration of Legacy ERP System Based on Ontology Learning from SQL Scripts. In: Welzer, T., et al. New Trends in Databases and Information Systems. ADBIS 2019. Communications in Computer and Information Science, vol 1064. Springer, Cham. https://doi.org/10.1007/978-3-030-30278-8_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30278-8_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30277-1

  • Online ISBN: 978-3-030-30278-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics