[go: up one dir, main page]

Skip to main content

Mining Exceptional Social Behaviour

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11805))

Included in the following conference series:

Abstract

Essentially, our lives are made of social interactions. These can be recorded through personal gadgets as well as sensors adequately attached to people for research purposes. In particular, such sensors may record real time location of people. This location data can then be used to infer interactions, which may be translated into behavioural patterns. In this paper, we focus on the automatic discovery of exceptional social behaviour from spatio-temporal data. For that, we propose a method for Exceptional Behaviour Discovery (EBD). The proposed method combines Subgroup Discovery and Network Science techniques for finding social behaviour that deviates from the norm. In particular, it transforms movement and demographic data into attributed social interaction networks, and returns descriptive subgroups. We applied the proposed method on two real datasets containing location data from children playing in the school playground. Our results indicate that this is a valid approach which is able to obtain meaningful knowledge from the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altman, I.: The Environment and Social Behavior: Privacy, Personal Space, Territory, and Crowding. Brooks/Cole Publishing Company, Belmont (1975)

    Google Scholar 

  2. Atzmueller, M.: Data mining on social interaction networks. JDMDH 1 (2014)

    Google Scholar 

  3. Atzmueller, M.: Subgroup discovery. WIREs DMKD 5(1), 35–49 (2015)

    Google Scholar 

  4. Atzmueller, M.: Local exceptionality detection on social interaction networks. In: Berendt, B., Bringmann, B., Fromont, É., Garriga, G., Miettinen, P., Tatti, N., Tresp, V. (eds.) ECML PKDD 2016. LNCS, vol. 9853, pp. 298–302. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46131-1_39

    Chapter  Google Scholar 

  5. Atzmueller, M.: Descriptive community detection. In: Missaoui, R., Kuznetsov, S.O., Obiedkov, S. (eds.) Formal Concept Analysis of Social Networks. LNSN, pp. 41–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64167-6_3

    Chapter  Google Scholar 

  6. Atzmueller, M.: Compositional subgroup discovery on attributed social interaction networks. In: Soldatova, L., Vanschoren, J., Papadopoulos, G., Ceci, M. (eds.) DS 2018. LNCS, vol. 11198, pp. 259–275. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01771-2_17

    Chapter  Google Scholar 

  7. Atzmueller, M., Puppe, F.: SD-Map – a fast algorithm for exhaustive subgroup discovery. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS, vol. 4213, pp. 6–17. Springer, Heidelberg (2006). https://doi.org/10.1007/11871637_6

    Chapter  Google Scholar 

  8. Berlanga, F., del Jesus, M.J., González, P., Herrera, F., Mesonero, M.: Multiobjective evolutionary induction of subgroup discovery fuzzy rules: a case study in marketing. In: Perner, P. (ed.) ICDM 2006. LNCS, vol. 4065, pp. 337–349. Springer, Heidelberg (2006). https://doi.org/10.1007/11790853_27

    Chapter  Google Scholar 

  9. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications, vol. 290. Elsevier Science Ltd., North-Holland (1976)

    Book  Google Scholar 

  10. Cabrera-Quiros, L., Demetriou, A., Gedik, E., van der Meij, L., Hung, H.: The matchNMingle dataset: a novel multi-sensor resource for the analysis of social interactions and group dynamics in-the-wild during free-standing conversations and speed dates. IEEE Trans. Affect. Comput. 99, 1–17 (2018)

    Article  Google Scholar 

  11. Delener, N.: Religious contrasts in consumer decision behaviour patterns: their dimensions and marketing implications. Eur. J. Mark. 28(5), 36–53 (1994)

    Article  Google Scholar 

  12. Duivesteijn, W., Knobbe, A.J.: Exploiting false discoveries - statistical validation of patterns and quality measures in subgroup discovery. In: ICDM, pp. 151–160. IEEE Computer Society (2011)

    Google Scholar 

  13. Gamberger, D., Lavrac, N.: Expert-guided subgroup discovery: methodology and application. J. Artif. Intell. Res. 17, 501–527 (2002)

    Article  Google Scholar 

  14. Goffman, E. (ed.): Interaction Ritual: Essays in Face to Face Behavior. Piscataway, Aldine-Transactions (1967)

    Google Scholar 

  15. Grosskreutz, H., Rüping, S.: On subgroup discovery in numerical domains. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5781, p. 30. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04180-8_15

    Chapter  Google Scholar 

  16. Heravi, B.M., Gibson, J.L., Hailes, S., Skuse, D.: Playground social interaction analysis using bespoke wearable sensors for tracking and motion capture. In: Proceedings of the 5th International Conference on Movement and Computing, MOCO 2018, pp. 21:1–21:8. ACM (2018)

    Google Scholar 

  17. Herrera, F., Carmona, C.J., González, P., del Jesús, M.J.: An overview on subgroup discovery: foundations and applications. Knowl. Inf. Syst. 29(3), 495–525 (2011)

    Article  Google Scholar 

  18. Jorge, A.M., Pereira, F., Azevedo, P.J.: Visual interactive subgroup discovery with numerical properties of interest. In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds.) DS 2006. LNCS, vol. 4265, pp. 301–305. Springer, Heidelberg (2006). https://doi.org/10.1007/11893318_31

    Chapter  Google Scholar 

  19. Kleinberg, J.M.: Hubs, authorities, and communities. ACM Comput. Surv. 31(4es), 5 (1999)

    Article  Google Scholar 

  20. Klösgen, W.: Handbook of Data Mining and Knowledge Discovery. Oxford University Press Inc., New York (2002)

    MATH  Google Scholar 

  21. Klösgen, W., May, M.: Spatial subgroup mining integrated in an object-relational spatial database. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 275–286. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3_23

    Chapter  MATH  Google Scholar 

  22. Ko, T.: A survey on behavior analysis in video surveillance for homeland security applications. In: Proceedings of the 37th IEEE Applied Imagery Pattern Recognition Workshop, AIPR 2008, Washington, DC, USA, 15–17 October 2008, pp. 1–8 (2008)

    Google Scholar 

  23. Lauw, H.W., Lim, E., Pang, H., Tan, T.: Stevent: spatio-temporal event model for social network discovery. ACM Trans. Inf. Syst. 28(3), 15:1–15:32 (2010)

    Article  Google Scholar 

  24. Leman, D., Feelders, A., Knobbe, A.: Exceptional model mining. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS, vol. 5212, pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87481-2_1

    Chapter  Google Scholar 

  25. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27(1), 415–444 (2001)

    Article  Google Scholar 

  26. Messinger, D.S., et al.: Continuous measurement of dynamic classroom social interactions. Int. J. Behav. Dev. 43(3), 263–270 (2019)

    Article  Google Scholar 

  27. Newman, M.: Networks: an introduction. In: Introduction: A Short Introduction to Networks and Why We Study Them. Oxford University Press, Inc., New York (2010). Chap

    Chapter  Google Scholar 

  28. Owen, N., Healy, G.N., Matthews, C.E., Dunstan, D.W.: Too much sitting: the population health science of sedentary behavior. Exerc. Sport Sci. Rev. 38(3), 182–196 (2010)

    Article  Google Scholar 

  29. Roddick, J.F., Spiliopoulou, M.: A bibliography of temporal, spatial and spatio-temporal data mining research. SIGKDD Explor. 1(1), 34–38 (1999)

    Article  Google Scholar 

  30. Romero, C., González, P., Ventura, S., del Jesús, M.J., Herrera, F.: Evolutionary algorithms for subgroup discovery in E-learning: a practical application using moodle data. Expert Syst. Appl. 36(2), 1632–1644 (2009)

    Article  Google Scholar 

  31. Rebelo de Sá, C., Duivesteijn, W., Soares, C., Knobbe, A.: Exceptional preferences mining. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS, vol. 9956, pp. 3–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_1

    Chapter  Google Scholar 

  32. Škrlj, B., Kralj, J., Vavpetič, A., Lavrač, N.: Community-based semantic subgroup discovery. In: Appice, A., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2017. LNCS, vol. 10785, pp. 182–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78680-3_13

    Chapter  Google Scholar 

  33. Terry, M.A., Mynatt, E.D., Ryall, K., Leigh, D.: Social net: using patterns of physical proximity over time to infer shared interests. In: CHI Extended Abstracts, pp. 816–817. ACM (2002)

    Google Scholar 

  34. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  35. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63223-9_108

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the German Research Foundation (DFG) project “MODUS” (under grant AT 88/4-1). Furthermore, the research leading to these results has received funding (JG) from ESRC grant ES/N006577/1. This work was financed by the project Kids First, project number 68639.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Centeio Jorge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jorge, C.C., Atzmueller, M., Heravi, B.M., Gibson, J.L., de Sá, C.R., Rossetti, R.J.F. (2019). Mining Exceptional Social Behaviour. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11805. Springer, Cham. https://doi.org/10.1007/978-3-030-30244-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30244-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30243-6

  • Online ISBN: 978-3-030-30244-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics