Abstract
This paper proposes the design and the validation through in-vivo measurements, of an innovative machine learning (ML) approach for a synchronous Brain Computer Interface (BCI). The here-proposed system analyzes EEG signals from 8 wireless smart electrodes, placed in motor, and sensory-motor cortex area. For its functioning, the BCI exploits a specific brain activity patterns (BAP) elicited during the measurements by using clinical-inspired stimulation protocol that is suitable for the evocation of the Movement-Related Cortical Potentials (MRCPs). The proposed BCI analyzes the EEGs through symbolization-based algorithm: the Local Binary Patterning, which – due to its end-to-end binary nature - strongly reduces the computational complexity of the features extraction (FE) and real-time classification stages.
As last step, the user intentions discrimination is entrusted to a weighted Support Vector Machine (wSVM) with linear kernel. The data have been collected from 3 subjects (aged 26 ± 1), creating an overall dataset that consists of 391 ± 106 observations per participant. The in-vivo real-time validation showed an intention recognition accuracy of 85.61 ± 1.19%. The overall computing chain requests, on average, just 3 ms beyond the storage time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lotte, F., et al.: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)
Annese, V.F., De Venuto, D.: FPGA based architecture for fall-risk assessment during gait monitoring by synchronous EEG/EMG. In: 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Gallipoli, pp. 116–121 (2015). https://doi.org/10.1109/iwasi.2015.7184953
Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain–computer interface for cursor control Electroencephalogr. Clin. Neurophysiol. 78, 252–259 (1991)
Annese, V.F., Crepaldi, M., Demarchi, D., De Venuto, D.: A digital processor architecture for combined EEG/EMG falling risk prediction. In: 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, pp. 714–719 (2016). ISBN 978-3-9815-3707-9
Qi, H., et al.: A speedy calibration method using riemannian geometry measurement and other-subject samples on A P300 speller. IEEE Trans. Neural Syst. Rehabil. Eng. 26(3), 602–608 (2018)
Kobayashi, N., Nakagawa, M.: BCI-based control of electric wheelchair using fractal characteristics of EEG. IEEJ Trans. Electr. Electron. Eng. 13, 1795–1803 (2018)
De Venuto, D., Torre, M.D., Boero, C., Carrara, S., De Micheli, G.: A novel multi-working electrode potentiostat for electrochemical detection of metabolites. In: SENSORS, 2010 IEEE, Kona, HI, pp. 1572–1577 (2010). https://doi.org/10.1109/icsens.2010.5690297
Ang, K.K., Guan, C.: Brain-computer interface in stroke rehabilitation. J. Comput. Sci. Eng. 7, 139–146 (2013)
De Venuto, D., Annese, V.F., Mezzina, G.: Remote neuro-cognitive impairment sensing based on P300 spatio-temporal monitoring. IEEE Sens. J. 16(23), 8348–8356 (2016). https://doi.org/10.1109/jsen.2016.2606553
Lotte, F.: A tutorial on EEG signal-processing techniques for mental-state recognition in brain–computer interfaces. In: Guide to Brain–Computer Music Interfacing, pp 133–161. Springer, Berlin (2014)
Annese, V.F., De Venuto, D.: Fall-risk assessment by combined movement related potentials and co-contraction index monitoring. In: 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, pp. 1–4 (2015). https://doi.org/10.1109/biocas.2015.7348366
Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398, 297–298 (1999)
Peters, B.O., Pfurtscheller, G., Flyvbjerg, H.: Automatic differentiation of multichannel EEG signals. IEEE Trans. Biomed. Eng. 48(1), 111–116 (2001)
Hübner, D., Verhoeven, T., Schmid, K., Müller, K.R., Tangermann, M., et al.: Learning from label proportions in brain-computer interfaces: online unsupervised learning with guarantees. PLoS ONE 12(4), e0175856 (2017). https://doi.org/10.1371/journal.pone.0175856
Leeb, R., Tonin, L., Rohm, M., Desideri, L., Carlson, T., Millán, J.D.R.: Towards Independence: a BCI telepresence robot for people with severe motor disabilities. Proc. IEEE 103(6), 969–982 (2015)
Shanir, P.P.M., et al.: Automatic seizure detection based on morphological features using one-dimensional local binary pattern on long-term EEG. Clin. EEG Neurosci. 49, 351–362 (2018)
Schindler, K., et al.: On seeing the trees and the forest: single signal and multisignal analysis of periictal intracranial EEG. Epilepsia 53, 1658–1668 (2012)
de Tommaso, M., Vecchio, E., Ricci, K., Montemurno, A., De Venuto, D., Annese, V.F.: Combined EEG/EMG evaluation during a novel dual task paradigm for gait analysis. In: 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Gallipoli, pp. 181–186 (2015). https://doi.org/10.1109/iwasi.2015.7184949
McFarland, D.J., Miner, L.A., Vaughan, T.M., Wolpaw, J.R.: Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 12(3), 177–186 (2000)
Green, J.B., StArnold, P.A., Rozhkov, L., Strother, D.M., Garrott, N.: Bereitschaft (readiness potential) and supplemental motor area interaction in movement generation: spinal cord injury and normal subjects. J. Rehabil. Res. Dev. 40(3), 225–234 (2003). Daw, C.S., et al.: A review of symbolic analysis of experimental data. Rev. Sci. Instrum. 74(2), 915–930 (2003)
Nakamura, A., et al.: Somatosensory homunculus as drawn by MEG. Neuroimage 7(4), 377–386 (1998)
De Venuto, D., Stikvoort, E., Tio Castro, D., Ponomarev, Y.: Ultra low-power 12-bit SAR ADC for RFID applications. In: 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), Dresden, pp. 1071–1075 (2010). https://doi.org/10.1109/date.2010.5456968
De Venuto, D., Tio Castro, D., Ponomarev, Y., Stikvoort, E.: 0.8 μW 12-bit SAR ADC sensors interface for RFID applications. Microelectron. J. 41(11), 746–751 (2010). ISSN 0026-2692. https://doi.org/10.1016/j.mejo.2010.06.019
Carrara, S., Torre, M.D., Cavallini, A., De Venuto, D., De Micheli, G.: Multiplexing pH and temperature in a molecular biosensor. In: 2010 Biomedical Circuits and Systems Conference (BioCAS), Paphos, pp. 146–149 (2010). https://doi.org/10.1109/biocas.2010.5709592
Hearst, M.A., et al.: Support vector machines. IEEE Intell. Syst. Their Appl. 13(4), 18–28 (1998)
Christianini, N., Shawe-Taylor, J.C.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)
Zweig, M.H., Campbell, G.: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39(4), 561–577 (1993)
Acknowledgment
This work was supported by the project AMICO (Assistenza Medicale In COntextual awareness, AMICO_Project_ARS01_00900).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
De Venuto, D., Mezzina, G. (2020). Novel Synchronous Brain Computer Interface Based on 2-D EEG Local Binary Patterning. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1038. Springer, Cham. https://doi.org/10.1007/978-3-030-29513-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-29513-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29512-7
Online ISBN: 978-3-030-29513-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)