[go: up one dir, main page]

Skip to main content

Novel Synchronous Brain Computer Interface Based on 2-D EEG Local Binary Patterning

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1038))

Included in the following conference series:

Abstract

This paper proposes the design and the validation through in-vivo measurements, of an innovative machine learning (ML) approach for a synchronous Brain Computer Interface (BCI). The here-proposed system analyzes EEG signals from 8 wireless smart electrodes, placed in motor, and sensory-motor cortex area. For its functioning, the BCI exploits a specific brain activity patterns (BAP) elicited during the measurements by using clinical-inspired stimulation protocol that is suitable for the evocation of the Movement-Related Cortical Potentials (MRCPs). The proposed BCI analyzes the EEGs through symbolization-based algorithm: the Local Binary Patterning, which – due to its end-to-end binary nature - strongly reduces the computational complexity of the features extraction (FE) and real-time classification stages.

As last step, the user intentions discrimination is entrusted to a weighted Support Vector Machine (wSVM) with linear kernel. The data have been collected from 3 subjects (aged 26 ± 1), creating an overall dataset that consists of 391 ± 106 observations per participant. The in-vivo real-time validation showed an intention recognition accuracy of 85.61 ± 1.19%. The overall computing chain requests, on average, just 3 ms beyond the storage time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lotte, F., et al.: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)

    Article  Google Scholar 

  2. Annese, V.F., De Venuto, D.: FPGA based architecture for fall-risk assessment during gait monitoring by synchronous EEG/EMG. In: 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Gallipoli, pp. 116–121 (2015). https://doi.org/10.1109/iwasi.2015.7184953

  3. Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain–computer interface for cursor control Electroencephalogr. Clin. Neurophysiol. 78, 252–259 (1991)

    Article  Google Scholar 

  4. Annese, V.F., Crepaldi, M., Demarchi, D., De Venuto, D.: A digital processor architecture for combined EEG/EMG falling risk prediction. In: 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, pp. 714–719 (2016). ISBN 978-3-9815-3707-9

    Google Scholar 

  5. Qi, H., et al.: A speedy calibration method using riemannian geometry measurement and other-subject samples on A P300 speller. IEEE Trans. Neural Syst. Rehabil. Eng. 26(3), 602–608 (2018)

    Article  Google Scholar 

  6. Kobayashi, N., Nakagawa, M.: BCI-based control of electric wheelchair using fractal characteristics of EEG. IEEJ Trans. Electr. Electron. Eng. 13, 1795–1803 (2018)

    Article  Google Scholar 

  7. De Venuto, D., Torre, M.D., Boero, C., Carrara, S., De Micheli, G.: A novel multi-working electrode potentiostat for electrochemical detection of metabolites. In: SENSORS, 2010 IEEE, Kona, HI, pp. 1572–1577 (2010). https://doi.org/10.1109/icsens.2010.5690297

  8. Ang, K.K., Guan, C.: Brain-computer interface in stroke rehabilitation. J. Comput. Sci. Eng. 7, 139–146 (2013)

    Article  Google Scholar 

  9. De Venuto, D., Annese, V.F., Mezzina, G.: Remote neuro-cognitive impairment sensing based on P300 spatio-temporal monitoring. IEEE Sens. J. 16(23), 8348–8356 (2016). https://doi.org/10.1109/jsen.2016.2606553

    Article  Google Scholar 

  10. Lotte, F.: A tutorial on EEG signal-processing techniques for mental-state recognition in brain–computer interfaces. In: Guide to Brain–Computer Music Interfacing, pp 133–161. Springer, Berlin (2014)

    Google Scholar 

  11. Annese, V.F., De Venuto, D.: Fall-risk assessment by combined movement related potentials and co-contraction index monitoring. In: 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, pp. 1–4 (2015). https://doi.org/10.1109/biocas.2015.7348366

  12. Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398, 297–298 (1999)

    Article  Google Scholar 

  13. Peters, B.O., Pfurtscheller, G., Flyvbjerg, H.: Automatic differentiation of multichannel EEG signals. IEEE Trans. Biomed. Eng. 48(1), 111–116 (2001)

    Article  Google Scholar 

  14. Hübner, D., Verhoeven, T., Schmid, K., Müller, K.R., Tangermann, M., et al.: Learning from label proportions in brain-computer interfaces: online unsupervised learning with guarantees. PLoS ONE 12(4), e0175856 (2017). https://doi.org/10.1371/journal.pone.0175856

    Article  Google Scholar 

  15. Leeb, R., Tonin, L., Rohm, M., Desideri, L., Carlson, T., Millán, J.D.R.: Towards Independence: a BCI telepresence robot for people with severe motor disabilities. Proc. IEEE 103(6), 969–982 (2015)

    Article  Google Scholar 

  16. Shanir, P.P.M., et al.: Automatic seizure detection based on morphological features using one-dimensional local binary pattern on long-term EEG. Clin. EEG Neurosci. 49, 351–362 (2018)

    Article  Google Scholar 

  17. Schindler, K., et al.: On seeing the trees and the forest: single signal and multisignal analysis of periictal intracranial EEG. Epilepsia 53, 1658–1668 (2012)

    Article  Google Scholar 

  18. de Tommaso, M., Vecchio, E., Ricci, K., Montemurno, A., De Venuto, D., Annese, V.F.: Combined EEG/EMG evaluation during a novel dual task paradigm for gait analysis. In: 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Gallipoli, pp. 181–186 (2015). https://doi.org/10.1109/iwasi.2015.7184949

  19. McFarland, D.J., Miner, L.A., Vaughan, T.M., Wolpaw, J.R.: Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 12(3), 177–186 (2000)

    Article  Google Scholar 

  20. Green, J.B., StArnold, P.A., Rozhkov, L., Strother, D.M., Garrott, N.: Bereitschaft (readiness potential) and supplemental motor area interaction in movement generation: spinal cord injury and normal subjects. J. Rehabil. Res. Dev. 40(3), 225–234 (2003). Daw, C.S., et al.: A review of symbolic analysis of experimental data. Rev. Sci. Instrum. 74(2), 915–930 (2003)

    Google Scholar 

  21. Nakamura, A., et al.: Somatosensory homunculus as drawn by MEG. Neuroimage 7(4), 377–386 (1998)

    Article  Google Scholar 

  22. De Venuto, D., Stikvoort, E., Tio Castro, D., Ponomarev, Y.: Ultra low-power 12-bit SAR ADC for RFID applications. In: 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), Dresden, pp. 1071–1075 (2010). https://doi.org/10.1109/date.2010.5456968

  23. De Venuto, D., Tio Castro, D., Ponomarev, Y., Stikvoort, E.: 0.8 μW 12-bit SAR ADC sensors interface for RFID applications. Microelectron. J. 41(11), 746–751 (2010). ISSN 0026-2692. https://doi.org/10.1016/j.mejo.2010.06.019

    Article  Google Scholar 

  24. Carrara, S., Torre, M.D., Cavallini, A., De Venuto, D., De Micheli, G.: Multiplexing pH and temperature in a molecular biosensor. In: 2010 Biomedical Circuits and Systems Conference (BioCAS), Paphos, pp. 146–149 (2010). https://doi.org/10.1109/biocas.2010.5709592

  25. Hearst, M.A., et al.: Support vector machines. IEEE Intell. Syst. Their Appl. 13(4), 18–28 (1998)

    Article  Google Scholar 

  26. Christianini, N., Shawe-Taylor, J.C.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  27. Zweig, M.H., Campbell, G.: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39(4), 561–577 (1993)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the project AMICO (Assistenza Medicale In COntextual awareness, AMICO_Project_ARS01_00900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Mezzina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Venuto, D., Mezzina, G. (2020). Novel Synchronous Brain Computer Interface Based on 2-D EEG Local Binary Patterning. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1038. Springer, Cham. https://doi.org/10.1007/978-3-030-29513-4_14

Download citation

Publish with us

Policies and ethics